/** * OpenAL cross platform audio library * Copyright (C) 2013 by Mike Gorchak * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "alMain.h" #include "alFilter.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" typedef struct ALflangerState { DERIVE_FROM_TYPE(ALeffectState); ALfloat *SampleBufferLeft; ALfloat *SampleBufferRight; ALuint BufferLength; ALint offset; ALfloat lfo_coeff; ALint lfo_disp; /* Gains for left and right sides */ ALfloat Gain[2][MaxChannels]; /* effect parameters */ ALint waveform; ALint phase; ALfloat rate; ALfloat depth; ALfloat feedback; ALfloat delay; ALfloat frequency; } ALflangerState; static ALvoid FlangerDestroy(ALeffectState *effect) { ALflangerState *state = GET_PARENT_TYPE(ALflangerState, ALeffectState, effect); if(state) { free(state->SampleBufferLeft); state->SampleBufferLeft = NULL; free(state->SampleBufferRight); state->SampleBufferRight = NULL; free(state); } } static ALboolean FlangerDeviceUpdate(ALeffectState *effect, ALCdevice *Device) { ALflangerState *state = GET_PARENT_TYPE(ALflangerState, ALeffectState, effect); ALuint maxlen; ALuint it; maxlen = fastf2u(AL_FLANGER_MAX_DELAY * 3.0f * Device->Frequency) + 1; maxlen = NextPowerOf2(maxlen); if(maxlen != state->BufferLength) { void *temp; temp = realloc(state->SampleBufferLeft, maxlen * sizeof(ALfloat)); if(!temp) return AL_FALSE; state->SampleBufferLeft = temp; temp = realloc(state->SampleBufferRight, maxlen * sizeof(ALfloat)); if(!temp) return AL_FALSE; state->SampleBufferRight = temp; state->BufferLength = maxlen; } for(it = 0;it < state->BufferLength;it++) { state->SampleBufferLeft[it] = 0.0f; state->SampleBufferRight[it] = 0.0f; } state->frequency = (ALfloat)Device->Frequency; return AL_TRUE; } static ALvoid FlangerUpdate(ALeffectState *effect, ALCdevice *Device, const ALeffectslot *Slot) { ALflangerState *state = GET_PARENT_TYPE(ALflangerState, ALeffectState, effect); ALuint it; for(it = 0;it < MaxChannels;it++) { state->Gain[0][it] = 0.0f; state->Gain[1][it] = 0.0f; } state->waveform = Slot->effect.Flanger.Waveform; state->phase = Slot->effect.Flanger.Phase; state->rate = Slot->effect.Flanger.Rate; state->depth = Slot->effect.Flanger.Depth; state->feedback = Slot->effect.Flanger.Feedback; state->delay = Slot->effect.Flanger.Delay; state->frequency = (ALfloat)Device->Frequency; /* Gains for left and right sides */ ComputeAngleGains(Device, atan2f(-1.0f, 0.0f), 0.0f, Slot->Gain, state->Gain[0]); ComputeAngleGains(Device, atan2f(+1.0f, 0.0f), 0.0f, Slot->Gain, state->Gain[1]); /* Calculate LFO coefficient */ switch(state->waveform) { case AL_FLANGER_WAVEFORM_TRIANGLE: if(state->rate == 0.0f) state->lfo_coeff = 0.0f; else state->lfo_coeff = 1.0f / (state->frequency / state->rate); break; case AL_FLANGER_WAVEFORM_SINUSOID: if (state->rate == 0.0f) state->lfo_coeff = 0.0f; else state->lfo_coeff = F_PI * 2.0f / (state->frequency / state->rate); break; } /* Calculate lfo phase displacement */ if(state->phase == 0 || state->rate == 0.0f) state->lfo_disp = 0; else { state->lfo_disp = (ALint)(state->frequency / state->rate / (360.0f / (ALfloat)state->phase)); } } static __inline void Triangle(ALint *delay_left, ALint *delay_right, ALint offset, const ALflangerState *state) { ALfloat lfo_value; lfo_value = 2.0f - fabsf(2.0f - fmodf(state->lfo_coeff * offset * 4.0f, 4.0f)); lfo_value *= state->depth * state->delay; lfo_value += state->delay; *delay_left = (ALint)(lfo_value * state->frequency); lfo_value = 2.0f - fabsf(2.0f - fmodf(state->lfo_coeff * (offset+state->lfo_disp) * 4.0f, 4.0f)); lfo_value *= state->depth * state->delay; lfo_value += state->delay; *delay_right = (ALint)(lfo_value * state->frequency); } static __inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALint offset, const ALflangerState *state) { ALfloat lfo_value; lfo_value = 1.0f + sinf(fmodf(state->lfo_coeff * offset, 2.0f*F_PI)); lfo_value *= state->depth * state->delay; lfo_value += state->delay; *delay_left = (ALint)(lfo_value * state->frequency); lfo_value = 1.0f + sinf(fmodf(state->lfo_coeff * (offset+state->lfo_disp), 2.0f*F_PI)); lfo_value *= state->depth * state->delay; lfo_value += state->delay; *delay_right = (ALint)(lfo_value * state->frequency); } #define DECL_TEMPLATE(func) \ static void Process##func(ALflangerState *state, ALuint SamplesToDo, \ const ALfloat *RESTRICT SamplesIn, \ ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE]) \ { \ const ALint mask = state->BufferLength-1; \ ALint offset = state->offset; \ ALuint it, kt; \ ALuint base; \ \ for(base = 0;base < SamplesToDo;) \ { \ ALfloat temps[64][2]; \ ALuint td = minu(SamplesToDo-base, 64); \ \ for(it = 0;it < td;it++,offset++) \ { \ ALint delay_left, delay_right; \ (func)(&delay_left, &delay_right, offset, state); \ \ temps[it][0] = state->SampleBufferLeft[(offset-delay_left)&mask]; \ state->SampleBufferLeft[offset&mask] = (temps[it][0] + \ SamplesIn[it+base]) * \ state->feedback; \ \ temps[it][1] = state->SampleBufferRight[(offset-delay_right)&mask];\ state->SampleBufferRight[offset&mask] = (temps[it][1] + \ SamplesIn[it+base]) * \ state->feedback; \ } \ \ for(kt = 0;kt < MaxChannels;kt++) \ { \ ALfloat gain = state->Gain[0][kt]; \ if(gain > 0.00001f) \ { \ for(it = 0;it < td;it++) \ SamplesOut[kt][it+base] += temps[it][0] * gain; \ } \ \ gain = state->Gain[1][kt]; \ if(gain > 0.00001f) \ { \ for(it = 0;it < td;it++) \ SamplesOut[kt][it+base] += temps[it][1] * gain; \ } \ } \ \ base += td; \ } \ \ state->offset = offset; \ } DECL_TEMPLATE(Triangle) DECL_TEMPLATE(Sinusoid) #undef DECL_TEMPLATE static ALvoid FlangerProcess(ALeffectState *effect, ALuint SamplesToDo, const ALfloat *RESTRICT SamplesIn, ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE]) { ALflangerState *state = GET_PARENT_TYPE(ALflangerState, ALeffectState, effect); if(state->waveform == AL_FLANGER_WAVEFORM_TRIANGLE) ProcessTriangle(state, SamplesToDo, SamplesIn, SamplesOut); else if(state->waveform == AL_FLANGER_WAVEFORM_SINUSOID) ProcessSinusoid(state, SamplesToDo, SamplesIn, SamplesOut); } ALeffectState *FlangerCreate(void) { ALflangerState *state; state = malloc(sizeof(*state)); if(!state) return NULL; GET_DERIVED_TYPE(ALeffectState, state)->Destroy = FlangerDestroy; GET_DERIVED_TYPE(ALeffectState, state)->DeviceUpdate = FlangerDeviceUpdate; GET_DERIVED_TYPE(ALeffectState, state)->Update = FlangerUpdate; GET_DERIVED_TYPE(ALeffectState, state)->Process = FlangerProcess; state->BufferLength = 0; state->SampleBufferLeft = NULL; state->SampleBufferRight = NULL; state->offset = 0; return GET_DERIVED_TYPE(ALeffectState, state); } void flanger_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { switch(param) { case AL_FLANGER_WAVEFORM: if(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM) effect->Flanger.Waveform = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_FLANGER_PHASE: if(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE) effect->Flanger.Phase = val; else alSetError(context, AL_INVALID_VALUE); break; default: alSetError(context, AL_INVALID_ENUM); break; } } void flanger_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { flanger_SetParami(effect, context, param, vals[0]); } void flanger_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) { switch(param) { case AL_FLANGER_RATE: if(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE) effect->Flanger.Rate = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_FLANGER_DEPTH: if(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH) effect->Flanger.Depth = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_FLANGER_FEEDBACK: if(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK) effect->Flanger.Feedback = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_FLANGER_DELAY: if(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY) effect->Flanger.Delay = val; else alSetError(context, AL_INVALID_VALUE); break; default: alSetError(context, AL_INVALID_ENUM); break; } } void flanger_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) { flanger_SetParamf(effect, context, param, vals[0]); } void flanger_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { switch(param) { case AL_FLANGER_WAVEFORM: *val = effect->Flanger.Waveform; break; case AL_FLANGER_PHASE: *val = effect->Flanger.Phase; break; default: alSetError(context, AL_INVALID_ENUM); break; } } void flanger_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { flanger_GetParami(effect, context, param, vals); } void flanger_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) { switch(param) { case AL_FLANGER_RATE: *val = effect->Flanger.Rate; break; case AL_FLANGER_DEPTH: *val = effect->Flanger.Depth; break; case AL_FLANGER_FEEDBACK: *val = effect->Flanger.Feedback; break; case AL_FLANGER_DELAY: *val = effect->Flanger.Delay; break; default: alSetError(context, AL_INVALID_ENUM); break; } } void flanger_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) { flanger_GetParamf(effect, context, param, vals); }