/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include "alMain.h" #include "alu.h" #include "alconfig.h" #include "ringbuffer.h" #include "threads.h" #include "compat.h" #include "backends/base.h" #include static const ALCchar alsaDevice[] = "ALSA Default"; #ifdef HAVE_DYNLOAD #define ALSA_FUNCS(MAGIC) \ MAGIC(snd_strerror); \ MAGIC(snd_pcm_open); \ MAGIC(snd_pcm_close); \ MAGIC(snd_pcm_nonblock); \ MAGIC(snd_pcm_frames_to_bytes); \ MAGIC(snd_pcm_bytes_to_frames); \ MAGIC(snd_pcm_hw_params_malloc); \ MAGIC(snd_pcm_hw_params_free); \ MAGIC(snd_pcm_hw_params_any); \ MAGIC(snd_pcm_hw_params_current); \ MAGIC(snd_pcm_hw_params_set_access); \ MAGIC(snd_pcm_hw_params_set_format); \ MAGIC(snd_pcm_hw_params_set_channels); \ MAGIC(snd_pcm_hw_params_set_periods_near); \ MAGIC(snd_pcm_hw_params_set_rate_near); \ MAGIC(snd_pcm_hw_params_set_rate); \ MAGIC(snd_pcm_hw_params_set_rate_resample); \ MAGIC(snd_pcm_hw_params_set_buffer_time_near); \ MAGIC(snd_pcm_hw_params_set_period_time_near); \ MAGIC(snd_pcm_hw_params_set_buffer_size_near); \ MAGIC(snd_pcm_hw_params_set_period_size_near); \ MAGIC(snd_pcm_hw_params_set_buffer_size_min); \ MAGIC(snd_pcm_hw_params_get_buffer_time_min); \ MAGIC(snd_pcm_hw_params_get_buffer_time_max); \ MAGIC(snd_pcm_hw_params_get_period_time_min); \ MAGIC(snd_pcm_hw_params_get_period_time_max); \ MAGIC(snd_pcm_hw_params_get_buffer_size); \ MAGIC(snd_pcm_hw_params_get_period_size); \ MAGIC(snd_pcm_hw_params_get_access); \ MAGIC(snd_pcm_hw_params_get_periods); \ MAGIC(snd_pcm_hw_params_test_format); \ MAGIC(snd_pcm_hw_params_test_channels); \ MAGIC(snd_pcm_hw_params); \ MAGIC(snd_pcm_sw_params_malloc); \ MAGIC(snd_pcm_sw_params_current); \ MAGIC(snd_pcm_sw_params_set_avail_min); \ MAGIC(snd_pcm_sw_params_set_stop_threshold); \ MAGIC(snd_pcm_sw_params); \ MAGIC(snd_pcm_sw_params_free); \ MAGIC(snd_pcm_prepare); \ MAGIC(snd_pcm_start); \ MAGIC(snd_pcm_resume); \ MAGIC(snd_pcm_reset); \ MAGIC(snd_pcm_wait); \ MAGIC(snd_pcm_delay); \ MAGIC(snd_pcm_state); \ MAGIC(snd_pcm_avail_update); \ MAGIC(snd_pcm_areas_silence); \ MAGIC(snd_pcm_mmap_begin); \ MAGIC(snd_pcm_mmap_commit); \ MAGIC(snd_pcm_readi); \ MAGIC(snd_pcm_writei); \ MAGIC(snd_pcm_drain); \ MAGIC(snd_pcm_drop); \ MAGIC(snd_pcm_recover); \ MAGIC(snd_pcm_info_malloc); \ MAGIC(snd_pcm_info_free); \ MAGIC(snd_pcm_info_set_device); \ MAGIC(snd_pcm_info_set_subdevice); \ MAGIC(snd_pcm_info_set_stream); \ MAGIC(snd_pcm_info_get_name); \ MAGIC(snd_ctl_pcm_next_device); \ MAGIC(snd_ctl_pcm_info); \ MAGIC(snd_ctl_open); \ MAGIC(snd_ctl_close); \ MAGIC(snd_ctl_card_info_malloc); \ MAGIC(snd_ctl_card_info_free); \ MAGIC(snd_ctl_card_info); \ MAGIC(snd_ctl_card_info_get_name); \ MAGIC(snd_ctl_card_info_get_id); \ MAGIC(snd_card_next); \ MAGIC(snd_config_update_free_global) static void *alsa_handle; #define MAKE_FUNC(f) static __typeof(f) * p##f ALSA_FUNCS(MAKE_FUNC); #undef MAKE_FUNC #define snd_strerror psnd_strerror #define snd_pcm_open psnd_pcm_open #define snd_pcm_close psnd_pcm_close #define snd_pcm_nonblock psnd_pcm_nonblock #define snd_pcm_frames_to_bytes psnd_pcm_frames_to_bytes #define snd_pcm_bytes_to_frames psnd_pcm_bytes_to_frames #define snd_pcm_hw_params_malloc psnd_pcm_hw_params_malloc #define snd_pcm_hw_params_free psnd_pcm_hw_params_free #define snd_pcm_hw_params_any psnd_pcm_hw_params_any #define snd_pcm_hw_params_current psnd_pcm_hw_params_current #define snd_pcm_hw_params_set_access psnd_pcm_hw_params_set_access #define snd_pcm_hw_params_set_format psnd_pcm_hw_params_set_format #define snd_pcm_hw_params_set_channels psnd_pcm_hw_params_set_channels #define snd_pcm_hw_params_set_periods_near psnd_pcm_hw_params_set_periods_near #define snd_pcm_hw_params_set_rate_near psnd_pcm_hw_params_set_rate_near #define snd_pcm_hw_params_set_rate psnd_pcm_hw_params_set_rate #define snd_pcm_hw_params_set_rate_resample psnd_pcm_hw_params_set_rate_resample #define snd_pcm_hw_params_set_buffer_time_near psnd_pcm_hw_params_set_buffer_time_near #define snd_pcm_hw_params_set_period_time_near psnd_pcm_hw_params_set_period_time_near #define snd_pcm_hw_params_set_buffer_size_near psnd_pcm_hw_params_set_buffer_size_near #define snd_pcm_hw_params_set_period_size_near psnd_pcm_hw_params_set_period_size_near #define snd_pcm_hw_params_set_buffer_size_min psnd_pcm_hw_params_set_buffer_size_min #define snd_pcm_hw_params_get_buffer_time_min psnd_pcm_hw_params_get_buffer_time_min #define snd_pcm_hw_params_get_buffer_time_max psnd_pcm_hw_params_get_buffer_time_max #define snd_pcm_hw_params_get_period_time_min psnd_pcm_hw_params_get_period_time_min #define snd_pcm_hw_params_get_period_time_max psnd_pcm_hw_params_get_period_time_max #define snd_pcm_hw_params_get_buffer_size psnd_pcm_hw_params_get_buffer_size #define snd_pcm_hw_params_get_period_size psnd_pcm_hw_params_get_period_size #define snd_pcm_hw_params_get_access psnd_pcm_hw_params_get_access #define snd_pcm_hw_params_get_periods psnd_pcm_hw_params_get_periods #define snd_pcm_hw_params_test_format psnd_pcm_hw_params_test_format #define snd_pcm_hw_params_test_channels psnd_pcm_hw_params_test_channels #define snd_pcm_hw_params psnd_pcm_hw_params #define snd_pcm_sw_params_malloc psnd_pcm_sw_params_malloc #define snd_pcm_sw_params_current psnd_pcm_sw_params_current #define snd_pcm_sw_params_set_avail_min psnd_pcm_sw_params_set_avail_min #define snd_pcm_sw_params_set_stop_threshold psnd_pcm_sw_params_set_stop_threshold #define snd_pcm_sw_params psnd_pcm_sw_params #define snd_pcm_sw_params_free psnd_pcm_sw_params_free #define snd_pcm_prepare psnd_pcm_prepare #define snd_pcm_start psnd_pcm_start #define snd_pcm_resume psnd_pcm_resume #define snd_pcm_reset psnd_pcm_reset #define snd_pcm_wait psnd_pcm_wait #define snd_pcm_delay psnd_pcm_delay #define snd_pcm_state psnd_pcm_state #define snd_pcm_avail_update psnd_pcm_avail_update #define snd_pcm_areas_silence psnd_pcm_areas_silence #define snd_pcm_mmap_begin psnd_pcm_mmap_begin #define snd_pcm_mmap_commit psnd_pcm_mmap_commit #define snd_pcm_readi psnd_pcm_readi #define snd_pcm_writei psnd_pcm_writei #define snd_pcm_drain psnd_pcm_drain #define snd_pcm_drop psnd_pcm_drop #define snd_pcm_recover psnd_pcm_recover #define snd_pcm_info_malloc psnd_pcm_info_malloc #define snd_pcm_info_free psnd_pcm_info_free #define snd_pcm_info_set_device psnd_pcm_info_set_device #define snd_pcm_info_set_subdevice psnd_pcm_info_set_subdevice #define snd_pcm_info_set_stream psnd_pcm_info_set_stream #define snd_pcm_info_get_name psnd_pcm_info_get_name #define snd_ctl_pcm_next_device psnd_ctl_pcm_next_device #define snd_ctl_pcm_info psnd_ctl_pcm_info #define snd_ctl_open psnd_ctl_open #define snd_ctl_close psnd_ctl_close #define snd_ctl_card_info_malloc psnd_ctl_card_info_malloc #define snd_ctl_card_info_free psnd_ctl_card_info_free #define snd_ctl_card_info psnd_ctl_card_info #define snd_ctl_card_info_get_name psnd_ctl_card_info_get_name #define snd_ctl_card_info_get_id psnd_ctl_card_info_get_id #define snd_card_next psnd_card_next #define snd_config_update_free_global psnd_config_update_free_global #endif static ALCboolean alsa_load(void) { ALCboolean error = ALC_FALSE; #ifdef HAVE_DYNLOAD if(!alsa_handle) { al_string missing_funcs = AL_STRING_INIT_STATIC(); alsa_handle = LoadLib("libasound.so.2"); if(!alsa_handle) { WARN("Failed to load %s\n", "libasound.so.2"); return ALC_FALSE; } error = ALC_FALSE; #define LOAD_FUNC(f) do { \ p##f = GetSymbol(alsa_handle, #f); \ if(p##f == NULL) { \ error = ALC_TRUE; \ alstr_append_cstr(&missing_funcs, "\n" #f); \ } \ } while(0) ALSA_FUNCS(LOAD_FUNC); #undef LOAD_FUNC if(error) { WARN("Missing expected functions:%s\n", alstr_get_cstr(missing_funcs)); CloseLib(alsa_handle); alsa_handle = NULL; } alstr_reset(&missing_funcs); } #endif return !error; } typedef struct { al_string name; al_string device_name; } DevMap; TYPEDEF_VECTOR(DevMap, vector_DevMap) static vector_DevMap PlaybackDevices; static vector_DevMap CaptureDevices; static void clear_devlist(vector_DevMap *devlist) { #define FREE_DEV(i) do { \ AL_STRING_DEINIT((i)->name); \ AL_STRING_DEINIT((i)->device_name); \ } while(0) VECTOR_FOR_EACH(DevMap, *devlist, FREE_DEV); VECTOR_RESIZE(*devlist, 0, 0); #undef FREE_DEV } static const char *prefix_name(snd_pcm_stream_t stream) { assert(stream == SND_PCM_STREAM_PLAYBACK || stream == SND_PCM_STREAM_CAPTURE); return (stream==SND_PCM_STREAM_PLAYBACK) ? "device-prefix" : "capture-prefix"; } static void probe_devices(snd_pcm_stream_t stream, vector_DevMap *DeviceList) { const char *main_prefix = "plughw:"; snd_ctl_t *handle; snd_ctl_card_info_t *info; snd_pcm_info_t *pcminfo; int card, err, dev; DevMap entry; clear_devlist(DeviceList); snd_ctl_card_info_malloc(&info); snd_pcm_info_malloc(&pcminfo); AL_STRING_INIT(entry.name); AL_STRING_INIT(entry.device_name); alstr_copy_cstr(&entry.name, alsaDevice); alstr_copy_cstr(&entry.device_name, GetConfigValue( NULL, "alsa", (stream==SND_PCM_STREAM_PLAYBACK) ? "device" : "capture", "default" )); VECTOR_PUSH_BACK(*DeviceList, entry); if(stream == SND_PCM_STREAM_PLAYBACK) { const char *customdevs, *sep, *next; next = GetConfigValue(NULL, "alsa", "custom-devices", ""); while((customdevs=next) != NULL && customdevs[0]) { next = strchr(customdevs, ';'); sep = strchr(customdevs, '='); if(!sep) { al_string spec = AL_STRING_INIT_STATIC(); if(next) alstr_copy_range(&spec, customdevs, next++); else alstr_copy_cstr(&spec, customdevs); ERR("Invalid ALSA device specification \"%s\"\n", alstr_get_cstr(spec)); alstr_reset(&spec); continue; } AL_STRING_INIT(entry.name); AL_STRING_INIT(entry.device_name); alstr_copy_range(&entry.name, customdevs, sep++); if(next) alstr_copy_range(&entry.device_name, sep, next++); else alstr_copy_cstr(&entry.device_name, sep); TRACE("Got device \"%s\", \"%s\"\n", alstr_get_cstr(entry.name), alstr_get_cstr(entry.device_name)); VECTOR_PUSH_BACK(*DeviceList, entry); } } card = -1; if((err=snd_card_next(&card)) < 0) ERR("Failed to find a card: %s\n", snd_strerror(err)); ConfigValueStr(NULL, "alsa", prefix_name(stream), &main_prefix); while(card >= 0) { const char *card_prefix = main_prefix; const char *cardname, *cardid; char name[256]; snprintf(name, sizeof(name), "hw:%d", card); if((err = snd_ctl_open(&handle, name, 0)) < 0) { ERR("control open (hw:%d): %s\n", card, snd_strerror(err)); goto next_card; } if((err = snd_ctl_card_info(handle, info)) < 0) { ERR("control hardware info (hw:%d): %s\n", card, snd_strerror(err)); snd_ctl_close(handle); goto next_card; } cardname = snd_ctl_card_info_get_name(info); cardid = snd_ctl_card_info_get_id(info); snprintf(name, sizeof(name), "%s-%s", prefix_name(stream), cardid); ConfigValueStr(NULL, "alsa", name, &card_prefix); dev = -1; while(1) { const char *device_prefix = card_prefix; const char *devname; char device[128]; if(snd_ctl_pcm_next_device(handle, &dev) < 0) ERR("snd_ctl_pcm_next_device failed\n"); if(dev < 0) break; snd_pcm_info_set_device(pcminfo, dev); snd_pcm_info_set_subdevice(pcminfo, 0); snd_pcm_info_set_stream(pcminfo, stream); if((err = snd_ctl_pcm_info(handle, pcminfo)) < 0) { if(err != -ENOENT) ERR("control digital audio info (hw:%d): %s\n", card, snd_strerror(err)); continue; } devname = snd_pcm_info_get_name(pcminfo); snprintf(name, sizeof(name), "%s-%s-%d", prefix_name(stream), cardid, dev); ConfigValueStr(NULL, "alsa", name, &device_prefix); snprintf(name, sizeof(name), "%s, %s (CARD=%s,DEV=%d)", cardname, devname, cardid, dev); snprintf(device, sizeof(device), "%sCARD=%s,DEV=%d", device_prefix, cardid, dev); TRACE("Got device \"%s\", \"%s\"\n", name, device); AL_STRING_INIT(entry.name); AL_STRING_INIT(entry.device_name); alstr_copy_cstr(&entry.name, name); alstr_copy_cstr(&entry.device_name, device); VECTOR_PUSH_BACK(*DeviceList, entry); } snd_ctl_close(handle); next_card: if(snd_card_next(&card) < 0) { ERR("snd_card_next failed\n"); break; } } snd_pcm_info_free(pcminfo); snd_ctl_card_info_free(info); } static int verify_state(snd_pcm_t *handle) { snd_pcm_state_t state = snd_pcm_state(handle); int err; switch(state) { case SND_PCM_STATE_OPEN: case SND_PCM_STATE_SETUP: case SND_PCM_STATE_PREPARED: case SND_PCM_STATE_RUNNING: case SND_PCM_STATE_DRAINING: case SND_PCM_STATE_PAUSED: /* All Okay */ break; case SND_PCM_STATE_XRUN: if((err=snd_pcm_recover(handle, -EPIPE, 1)) < 0) return err; break; case SND_PCM_STATE_SUSPENDED: if((err=snd_pcm_recover(handle, -ESTRPIPE, 1)) < 0) return err; break; case SND_PCM_STATE_DISCONNECTED: return -ENODEV; } return state; } typedef struct ALCplaybackAlsa { DERIVE_FROM_TYPE(ALCbackend); snd_pcm_t *pcmHandle; ALvoid *buffer; ALsizei size; ATOMIC(ALenum) killNow; althrd_t thread; } ALCplaybackAlsa; static int ALCplaybackAlsa_mixerProc(void *ptr); static int ALCplaybackAlsa_mixerNoMMapProc(void *ptr); static void ALCplaybackAlsa_Construct(ALCplaybackAlsa *self, ALCdevice *device); static void ALCplaybackAlsa_Destruct(ALCplaybackAlsa *self); static ALCenum ALCplaybackAlsa_open(ALCplaybackAlsa *self, const ALCchar *name); static ALCboolean ALCplaybackAlsa_reset(ALCplaybackAlsa *self); static ALCboolean ALCplaybackAlsa_start(ALCplaybackAlsa *self); static void ALCplaybackAlsa_stop(ALCplaybackAlsa *self); static DECLARE_FORWARD2(ALCplaybackAlsa, ALCbackend, ALCenum, captureSamples, void*, ALCuint) static DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, ALCuint, availableSamples) static ClockLatency ALCplaybackAlsa_getClockLatency(ALCplaybackAlsa *self); static DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, void, lock) static DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, void, unlock) DECLARE_DEFAULT_ALLOCATORS(ALCplaybackAlsa) DEFINE_ALCBACKEND_VTABLE(ALCplaybackAlsa); static void ALCplaybackAlsa_Construct(ALCplaybackAlsa *self, ALCdevice *device) { ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(ALCplaybackAlsa, ALCbackend, self); self->pcmHandle = NULL; self->buffer = NULL; ATOMIC_INIT(&self->killNow, AL_TRUE); } void ALCplaybackAlsa_Destruct(ALCplaybackAlsa *self) { if(self->pcmHandle) snd_pcm_close(self->pcmHandle); self->pcmHandle = NULL; ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); } static int ALCplaybackAlsa_mixerProc(void *ptr) { ALCplaybackAlsa *self = (ALCplaybackAlsa*)ptr; ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; const snd_pcm_channel_area_t *areas = NULL; snd_pcm_uframes_t update_size, num_updates; snd_pcm_sframes_t avail, commitres; snd_pcm_uframes_t offset, frames; char *WritePtr; int err; SetRTPriority(); althrd_setname(althrd_current(), MIXER_THREAD_NAME); update_size = device->UpdateSize; num_updates = device->NumUpdates; while(!ATOMIC_LOAD(&self->killNow, almemory_order_acquire)) { int state = verify_state(self->pcmHandle); if(state < 0) { ERR("Invalid state detected: %s\n", snd_strerror(state)); ALCplaybackAlsa_lock(self); aluHandleDisconnect(device, "Bad state: %s", snd_strerror(state)); ALCplaybackAlsa_unlock(self); break; } avail = snd_pcm_avail_update(self->pcmHandle); if(avail < 0) { ERR("available update failed: %s\n", snd_strerror(avail)); continue; } if((snd_pcm_uframes_t)avail > update_size*(num_updates+1)) { WARN("available samples exceeds the buffer size\n"); snd_pcm_reset(self->pcmHandle); continue; } // make sure there's frames to process if((snd_pcm_uframes_t)avail < update_size) { if(state != SND_PCM_STATE_RUNNING) { err = snd_pcm_start(self->pcmHandle); if(err < 0) { ERR("start failed: %s\n", snd_strerror(err)); continue; } } if(snd_pcm_wait(self->pcmHandle, 1000) == 0) ERR("Wait timeout... buffer size too low?\n"); continue; } avail -= avail%update_size; // it is possible that contiguous areas are smaller, thus we use a loop ALCplaybackAlsa_lock(self); while(avail > 0) { frames = avail; err = snd_pcm_mmap_begin(self->pcmHandle, &areas, &offset, &frames); if(err < 0) { ERR("mmap begin error: %s\n", snd_strerror(err)); break; } WritePtr = (char*)areas->addr + (offset * areas->step / 8); aluMixData(device, WritePtr, frames); commitres = snd_pcm_mmap_commit(self->pcmHandle, offset, frames); if(commitres < 0 || (commitres-frames) != 0) { ERR("mmap commit error: %s\n", snd_strerror(commitres >= 0 ? -EPIPE : commitres)); break; } avail -= frames; } ALCplaybackAlsa_unlock(self); } return 0; } static int ALCplaybackAlsa_mixerNoMMapProc(void *ptr) { ALCplaybackAlsa *self = (ALCplaybackAlsa*)ptr; ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; snd_pcm_uframes_t update_size, num_updates; snd_pcm_sframes_t avail; char *WritePtr; int err; SetRTPriority(); althrd_setname(althrd_current(), MIXER_THREAD_NAME); update_size = device->UpdateSize; num_updates = device->NumUpdates; while(!ATOMIC_LOAD(&self->killNow, almemory_order_acquire)) { int state = verify_state(self->pcmHandle); if(state < 0) { ERR("Invalid state detected: %s\n", snd_strerror(state)); ALCplaybackAlsa_lock(self); aluHandleDisconnect(device, "Bad state: %s", snd_strerror(state)); ALCplaybackAlsa_unlock(self); break; } avail = snd_pcm_avail_update(self->pcmHandle); if(avail < 0) { ERR("available update failed: %s\n", snd_strerror(avail)); continue; } if((snd_pcm_uframes_t)avail > update_size*num_updates) { WARN("available samples exceeds the buffer size\n"); snd_pcm_reset(self->pcmHandle); continue; } if((snd_pcm_uframes_t)avail < update_size) { if(state != SND_PCM_STATE_RUNNING) { err = snd_pcm_start(self->pcmHandle); if(err < 0) { ERR("start failed: %s\n", snd_strerror(err)); continue; } } if(snd_pcm_wait(self->pcmHandle, 1000) == 0) ERR("Wait timeout... buffer size too low?\n"); continue; } ALCplaybackAlsa_lock(self); WritePtr = self->buffer; avail = snd_pcm_bytes_to_frames(self->pcmHandle, self->size); aluMixData(device, WritePtr, avail); while(avail > 0) { int ret = snd_pcm_writei(self->pcmHandle, WritePtr, avail); switch (ret) { case -EAGAIN: continue; #if ESTRPIPE != EPIPE case -ESTRPIPE: #endif case -EPIPE: case -EINTR: ret = snd_pcm_recover(self->pcmHandle, ret, 1); if(ret < 0) avail = 0; break; default: if (ret >= 0) { WritePtr += snd_pcm_frames_to_bytes(self->pcmHandle, ret); avail -= ret; } break; } if (ret < 0) { ret = snd_pcm_prepare(self->pcmHandle); if(ret < 0) break; } } ALCplaybackAlsa_unlock(self); } return 0; } static ALCenum ALCplaybackAlsa_open(ALCplaybackAlsa *self, const ALCchar *name) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; const char *driver = NULL; int err; if(name) { const DevMap *iter; if(VECTOR_SIZE(PlaybackDevices) == 0) probe_devices(SND_PCM_STREAM_PLAYBACK, &PlaybackDevices); #define MATCH_NAME(i) (alstr_cmp_cstr((i)->name, name) == 0) VECTOR_FIND_IF(iter, const DevMap, PlaybackDevices, MATCH_NAME); #undef MATCH_NAME if(iter == VECTOR_END(PlaybackDevices)) return ALC_INVALID_VALUE; driver = alstr_get_cstr(iter->device_name); } else { name = alsaDevice; driver = GetConfigValue(NULL, "alsa", "device", "default"); } TRACE("Opening device \"%s\"\n", driver); err = snd_pcm_open(&self->pcmHandle, driver, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK); if(err < 0) { ERR("Could not open playback device '%s': %s\n", driver, snd_strerror(err)); return ALC_OUT_OF_MEMORY; } /* Free alsa's global config tree. Otherwise valgrind reports a ton of leaks. */ snd_config_update_free_global(); alstr_copy_cstr(&device->DeviceName, name); return ALC_NO_ERROR; } static ALCboolean ALCplaybackAlsa_reset(ALCplaybackAlsa *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; snd_pcm_uframes_t periodSizeInFrames; unsigned int periodLen, bufferLen; snd_pcm_sw_params_t *sp = NULL; snd_pcm_hw_params_t *hp = NULL; snd_pcm_format_t format = -1; snd_pcm_access_t access; unsigned int periods; unsigned int rate; const char *funcerr; int allowmmap; int dir; int err; switch(device->FmtType) { case DevFmtByte: format = SND_PCM_FORMAT_S8; break; case DevFmtUByte: format = SND_PCM_FORMAT_U8; break; case DevFmtShort: format = SND_PCM_FORMAT_S16; break; case DevFmtUShort: format = SND_PCM_FORMAT_U16; break; case DevFmtInt: format = SND_PCM_FORMAT_S32; break; case DevFmtUInt: format = SND_PCM_FORMAT_U32; break; case DevFmtFloat: format = SND_PCM_FORMAT_FLOAT; break; } allowmmap = GetConfigValueBool(alstr_get_cstr(device->DeviceName), "alsa", "mmap", 1); periods = device->NumUpdates; periodLen = (ALuint64)device->UpdateSize * 1000000 / device->Frequency; bufferLen = periodLen * periods; rate = device->Frequency; snd_pcm_hw_params_malloc(&hp); #define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error CHECK(snd_pcm_hw_params_any(self->pcmHandle, hp)); /* set interleaved access */ if(!allowmmap || snd_pcm_hw_params_set_access(self->pcmHandle, hp, SND_PCM_ACCESS_MMAP_INTERLEAVED) < 0) { /* No mmap */ CHECK(snd_pcm_hw_params_set_access(self->pcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED)); } /* test and set format (implicitly sets sample bits) */ if(snd_pcm_hw_params_test_format(self->pcmHandle, hp, format) < 0) { static const struct { snd_pcm_format_t format; enum DevFmtType fmttype; } formatlist[] = { { SND_PCM_FORMAT_FLOAT, DevFmtFloat }, { SND_PCM_FORMAT_S32, DevFmtInt }, { SND_PCM_FORMAT_U32, DevFmtUInt }, { SND_PCM_FORMAT_S16, DevFmtShort }, { SND_PCM_FORMAT_U16, DevFmtUShort }, { SND_PCM_FORMAT_S8, DevFmtByte }, { SND_PCM_FORMAT_U8, DevFmtUByte }, }; size_t k; for(k = 0;k < COUNTOF(formatlist);k++) { format = formatlist[k].format; if(snd_pcm_hw_params_test_format(self->pcmHandle, hp, format) >= 0) { device->FmtType = formatlist[k].fmttype; break; } } } CHECK(snd_pcm_hw_params_set_format(self->pcmHandle, hp, format)); /* test and set channels (implicitly sets frame bits) */ if(snd_pcm_hw_params_test_channels(self->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder)) < 0) { static const enum DevFmtChannels channellist[] = { DevFmtStereo, DevFmtQuad, DevFmtX51, DevFmtX71, DevFmtMono, }; size_t k; for(k = 0;k < COUNTOF(channellist);k++) { if(snd_pcm_hw_params_test_channels(self->pcmHandle, hp, ChannelsFromDevFmt(channellist[k], 0)) >= 0) { device->FmtChans = channellist[k]; device->AmbiOrder = 0; break; } } } CHECK(snd_pcm_hw_params_set_channels(self->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder))); /* set rate (implicitly constrains period/buffer parameters) */ if(!GetConfigValueBool(alstr_get_cstr(device->DeviceName), "alsa", "allow-resampler", 0) || !(device->Flags&DEVICE_FREQUENCY_REQUEST)) { if(snd_pcm_hw_params_set_rate_resample(self->pcmHandle, hp, 0) < 0) ERR("Failed to disable ALSA resampler\n"); } else if(snd_pcm_hw_params_set_rate_resample(self->pcmHandle, hp, 1) < 0) ERR("Failed to enable ALSA resampler\n"); CHECK(snd_pcm_hw_params_set_rate_near(self->pcmHandle, hp, &rate, NULL)); /* set buffer time (implicitly constrains period/buffer parameters) */ if((err=snd_pcm_hw_params_set_buffer_time_near(self->pcmHandle, hp, &bufferLen, NULL)) < 0) ERR("snd_pcm_hw_params_set_buffer_time_near failed: %s\n", snd_strerror(err)); /* set period time (implicitly sets buffer size/bytes/time and period size/bytes) */ if((err=snd_pcm_hw_params_set_period_time_near(self->pcmHandle, hp, &periodLen, NULL)) < 0) ERR("snd_pcm_hw_params_set_period_time_near failed: %s\n", snd_strerror(err)); /* install and prepare hardware configuration */ CHECK(snd_pcm_hw_params(self->pcmHandle, hp)); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_access(hp, &access)); CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, NULL)); CHECK(snd_pcm_hw_params_get_periods(hp, &periods, &dir)); if(dir != 0) WARN("Inexact period count: %u (%d)\n", periods, dir); snd_pcm_hw_params_free(hp); hp = NULL; snd_pcm_sw_params_malloc(&sp); CHECK(snd_pcm_sw_params_current(self->pcmHandle, sp)); CHECK(snd_pcm_sw_params_set_avail_min(self->pcmHandle, sp, periodSizeInFrames)); CHECK(snd_pcm_sw_params_set_stop_threshold(self->pcmHandle, sp, periodSizeInFrames*periods)); CHECK(snd_pcm_sw_params(self->pcmHandle, sp)); #undef CHECK snd_pcm_sw_params_free(sp); sp = NULL; device->NumUpdates = periods; device->UpdateSize = periodSizeInFrames; device->Frequency = rate; SetDefaultChannelOrder(device); return ALC_TRUE; error: ERR("%s failed: %s\n", funcerr, snd_strerror(err)); if(hp) snd_pcm_hw_params_free(hp); if(sp) snd_pcm_sw_params_free(sp); return ALC_FALSE; } static ALCboolean ALCplaybackAlsa_start(ALCplaybackAlsa *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; int (*thread_func)(void*) = NULL; snd_pcm_hw_params_t *hp = NULL; snd_pcm_access_t access; const char *funcerr; int err; snd_pcm_hw_params_malloc(&hp); #define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error CHECK(snd_pcm_hw_params_current(self->pcmHandle, hp)); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_access(hp, &access)); #undef CHECK snd_pcm_hw_params_free(hp); hp = NULL; self->size = snd_pcm_frames_to_bytes(self->pcmHandle, device->UpdateSize); if(access == SND_PCM_ACCESS_RW_INTERLEAVED) { self->buffer = al_malloc(16, self->size); if(!self->buffer) { ERR("buffer malloc failed\n"); return ALC_FALSE; } thread_func = ALCplaybackAlsa_mixerNoMMapProc; } else { err = snd_pcm_prepare(self->pcmHandle); if(err < 0) { ERR("snd_pcm_prepare(data->pcmHandle) failed: %s\n", snd_strerror(err)); return ALC_FALSE; } thread_func = ALCplaybackAlsa_mixerProc; } ATOMIC_STORE(&self->killNow, AL_FALSE, almemory_order_release); if(althrd_create(&self->thread, thread_func, self) != althrd_success) { ERR("Could not create playback thread\n"); al_free(self->buffer); self->buffer = NULL; return ALC_FALSE; } return ALC_TRUE; error: ERR("%s failed: %s\n", funcerr, snd_strerror(err)); if(hp) snd_pcm_hw_params_free(hp); return ALC_FALSE; } static void ALCplaybackAlsa_stop(ALCplaybackAlsa *self) { int res; if(ATOMIC_EXCHANGE(&self->killNow, AL_TRUE, almemory_order_acq_rel)) return; althrd_join(self->thread, &res); al_free(self->buffer); self->buffer = NULL; } static ClockLatency ALCplaybackAlsa_getClockLatency(ALCplaybackAlsa *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; snd_pcm_sframes_t delay = 0; ClockLatency ret; int err; ALCplaybackAlsa_lock(self); ret.ClockTime = GetDeviceClockTime(device); if((err=snd_pcm_delay(self->pcmHandle, &delay)) < 0) { ERR("Failed to get pcm delay: %s\n", snd_strerror(err)); delay = 0; } if(delay < 0) delay = 0; ret.Latency = delay * DEVICE_CLOCK_RES / device->Frequency; ALCplaybackAlsa_unlock(self); return ret; } typedef struct ALCcaptureAlsa { DERIVE_FROM_TYPE(ALCbackend); snd_pcm_t *pcmHandle; ALvoid *buffer; ALsizei size; ALboolean doCapture; ll_ringbuffer_t *ring; snd_pcm_sframes_t last_avail; } ALCcaptureAlsa; static void ALCcaptureAlsa_Construct(ALCcaptureAlsa *self, ALCdevice *device); static void ALCcaptureAlsa_Destruct(ALCcaptureAlsa *self); static ALCenum ALCcaptureAlsa_open(ALCcaptureAlsa *self, const ALCchar *name); static DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, ALCboolean, reset) static ALCboolean ALCcaptureAlsa_start(ALCcaptureAlsa *self); static void ALCcaptureAlsa_stop(ALCcaptureAlsa *self); static ALCenum ALCcaptureAlsa_captureSamples(ALCcaptureAlsa *self, ALCvoid *buffer, ALCuint samples); static ALCuint ALCcaptureAlsa_availableSamples(ALCcaptureAlsa *self); static ClockLatency ALCcaptureAlsa_getClockLatency(ALCcaptureAlsa *self); static DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, void, lock) static DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, void, unlock) DECLARE_DEFAULT_ALLOCATORS(ALCcaptureAlsa) DEFINE_ALCBACKEND_VTABLE(ALCcaptureAlsa); static void ALCcaptureAlsa_Construct(ALCcaptureAlsa *self, ALCdevice *device) { ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(ALCcaptureAlsa, ALCbackend, self); self->pcmHandle = NULL; self->buffer = NULL; self->ring = NULL; } void ALCcaptureAlsa_Destruct(ALCcaptureAlsa *self) { if(self->pcmHandle) snd_pcm_close(self->pcmHandle); self->pcmHandle = NULL; al_free(self->buffer); self->buffer = NULL; ll_ringbuffer_free(self->ring); self->ring = NULL; ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); } static ALCenum ALCcaptureAlsa_open(ALCcaptureAlsa *self, const ALCchar *name) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; const char *driver = NULL; snd_pcm_hw_params_t *hp; snd_pcm_uframes_t bufferSizeInFrames; snd_pcm_uframes_t periodSizeInFrames; ALboolean needring = AL_FALSE; snd_pcm_format_t format = -1; const char *funcerr; int err; if(name) { const DevMap *iter; if(VECTOR_SIZE(CaptureDevices) == 0) probe_devices(SND_PCM_STREAM_CAPTURE, &CaptureDevices); #define MATCH_NAME(i) (alstr_cmp_cstr((i)->name, name) == 0) VECTOR_FIND_IF(iter, const DevMap, CaptureDevices, MATCH_NAME); #undef MATCH_NAME if(iter == VECTOR_END(CaptureDevices)) return ALC_INVALID_VALUE; driver = alstr_get_cstr(iter->device_name); } else { name = alsaDevice; driver = GetConfigValue(NULL, "alsa", "capture", "default"); } TRACE("Opening device \"%s\"\n", driver); err = snd_pcm_open(&self->pcmHandle, driver, SND_PCM_STREAM_CAPTURE, SND_PCM_NONBLOCK); if(err < 0) { ERR("Could not open capture device '%s': %s\n", driver, snd_strerror(err)); return ALC_INVALID_VALUE; } /* Free alsa's global config tree. Otherwise valgrind reports a ton of leaks. */ snd_config_update_free_global(); switch(device->FmtType) { case DevFmtByte: format = SND_PCM_FORMAT_S8; break; case DevFmtUByte: format = SND_PCM_FORMAT_U8; break; case DevFmtShort: format = SND_PCM_FORMAT_S16; break; case DevFmtUShort: format = SND_PCM_FORMAT_U16; break; case DevFmtInt: format = SND_PCM_FORMAT_S32; break; case DevFmtUInt: format = SND_PCM_FORMAT_U32; break; case DevFmtFloat: format = SND_PCM_FORMAT_FLOAT; break; } funcerr = NULL; bufferSizeInFrames = maxu(device->UpdateSize*device->NumUpdates, 100*device->Frequency/1000); periodSizeInFrames = minu(bufferSizeInFrames, 25*device->Frequency/1000); snd_pcm_hw_params_malloc(&hp); #define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error CHECK(snd_pcm_hw_params_any(self->pcmHandle, hp)); /* set interleaved access */ CHECK(snd_pcm_hw_params_set_access(self->pcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED)); /* set format (implicitly sets sample bits) */ CHECK(snd_pcm_hw_params_set_format(self->pcmHandle, hp, format)); /* set channels (implicitly sets frame bits) */ CHECK(snd_pcm_hw_params_set_channels(self->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder))); /* set rate (implicitly constrains period/buffer parameters) */ CHECK(snd_pcm_hw_params_set_rate(self->pcmHandle, hp, device->Frequency, 0)); /* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */ if(snd_pcm_hw_params_set_buffer_size_min(self->pcmHandle, hp, &bufferSizeInFrames) < 0) { TRACE("Buffer too large, using intermediate ring buffer\n"); needring = AL_TRUE; CHECK(snd_pcm_hw_params_set_buffer_size_near(self->pcmHandle, hp, &bufferSizeInFrames)); } /* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */ CHECK(snd_pcm_hw_params_set_period_size_near(self->pcmHandle, hp, &periodSizeInFrames, NULL)); /* install and prepare hardware configuration */ CHECK(snd_pcm_hw_params(self->pcmHandle, hp)); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, NULL)); #undef CHECK snd_pcm_hw_params_free(hp); hp = NULL; if(needring) { self->ring = ll_ringbuffer_create( device->UpdateSize*device->NumUpdates, FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->AmbiOrder), false ); if(!self->ring) { ERR("ring buffer create failed\n"); goto error2; } } alstr_copy_cstr(&device->DeviceName, name); return ALC_NO_ERROR; error: ERR("%s failed: %s\n", funcerr, snd_strerror(err)); if(hp) snd_pcm_hw_params_free(hp); error2: ll_ringbuffer_free(self->ring); self->ring = NULL; snd_pcm_close(self->pcmHandle); self->pcmHandle = NULL; return ALC_INVALID_VALUE; } static ALCboolean ALCcaptureAlsa_start(ALCcaptureAlsa *self) { int err = snd_pcm_start(self->pcmHandle); if(err < 0) { ERR("start failed: %s\n", snd_strerror(err)); aluHandleDisconnect(STATIC_CAST(ALCbackend, self)->mDevice, "Capture state failure: %s", snd_strerror(err)); return ALC_FALSE; } self->doCapture = AL_TRUE; return ALC_TRUE; } static void ALCcaptureAlsa_stop(ALCcaptureAlsa *self) { ALCuint avail; int err; /* OpenAL requires access to unread audio after stopping, but ALSA's * snd_pcm_drain is unreliable and snd_pcm_drop drops it. Capture what's * available now so it'll be available later after the drop. */ avail = ALCcaptureAlsa_availableSamples(self); if(!self->ring && avail > 0) { /* The ring buffer implicitly captures when checking availability. * Direct access needs to explicitly capture it into temp storage. */ ALsizei size; void *ptr; size = snd_pcm_frames_to_bytes(self->pcmHandle, avail); ptr = al_malloc(16, size); if(ptr) { ALCcaptureAlsa_captureSamples(self, ptr, avail); al_free(self->buffer); self->buffer = ptr; self->size = size; } } err = snd_pcm_drop(self->pcmHandle); if(err < 0) ERR("drop failed: %s\n", snd_strerror(err)); self->doCapture = AL_FALSE; } static ALCenum ALCcaptureAlsa_captureSamples(ALCcaptureAlsa *self, ALCvoid *buffer, ALCuint samples) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; if(self->ring) { ll_ringbuffer_read(self->ring, buffer, samples); return ALC_NO_ERROR; } self->last_avail -= samples; while(ATOMIC_LOAD(&device->Connected, almemory_order_acquire) && samples > 0) { snd_pcm_sframes_t amt = 0; if(self->size > 0) { /* First get any data stored from the last stop */ amt = snd_pcm_bytes_to_frames(self->pcmHandle, self->size); if((snd_pcm_uframes_t)amt > samples) amt = samples; amt = snd_pcm_frames_to_bytes(self->pcmHandle, amt); memcpy(buffer, self->buffer, amt); if(self->size > amt) { memmove(self->buffer, self->buffer+amt, self->size - amt); self->size -= amt; } else { al_free(self->buffer); self->buffer = NULL; self->size = 0; } amt = snd_pcm_bytes_to_frames(self->pcmHandle, amt); } else if(self->doCapture) amt = snd_pcm_readi(self->pcmHandle, buffer, samples); if(amt < 0) { ERR("read error: %s\n", snd_strerror(amt)); if(amt == -EAGAIN) continue; if((amt=snd_pcm_recover(self->pcmHandle, amt, 1)) >= 0) { amt = snd_pcm_start(self->pcmHandle); if(amt >= 0) amt = snd_pcm_avail_update(self->pcmHandle); } if(amt < 0) { ERR("restore error: %s\n", snd_strerror(amt)); aluHandleDisconnect(device, "Capture recovery failure: %s", snd_strerror(amt)); break; } /* If the amount available is less than what's asked, we lost it * during recovery. So just give silence instead. */ if((snd_pcm_uframes_t)amt < samples) break; continue; } buffer = (ALbyte*)buffer + amt; samples -= amt; } if(samples > 0) memset(buffer, ((device->FmtType == DevFmtUByte) ? 0x80 : 0), snd_pcm_frames_to_bytes(self->pcmHandle, samples)); return ALC_NO_ERROR; } static ALCuint ALCcaptureAlsa_availableSamples(ALCcaptureAlsa *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; snd_pcm_sframes_t avail = 0; if(ATOMIC_LOAD(&device->Connected, almemory_order_acquire) && self->doCapture) avail = snd_pcm_avail_update(self->pcmHandle); if(avail < 0) { ERR("avail update failed: %s\n", snd_strerror(avail)); if((avail=snd_pcm_recover(self->pcmHandle, avail, 1)) >= 0) { if(self->doCapture) avail = snd_pcm_start(self->pcmHandle); if(avail >= 0) avail = snd_pcm_avail_update(self->pcmHandle); } if(avail < 0) { ERR("restore error: %s\n", snd_strerror(avail)); aluHandleDisconnect(device, "Capture recovery failure: %s", snd_strerror(avail)); } } if(!self->ring) { if(avail < 0) avail = 0; avail += snd_pcm_bytes_to_frames(self->pcmHandle, self->size); if(avail > self->last_avail) self->last_avail = avail; return self->last_avail; } while(avail > 0) { ll_ringbuffer_data_t vec[2]; snd_pcm_sframes_t amt; ll_ringbuffer_get_write_vector(self->ring, vec); if(vec[0].len == 0) break; amt = (vec[0].len < (snd_pcm_uframes_t)avail) ? vec[0].len : (snd_pcm_uframes_t)avail; amt = snd_pcm_readi(self->pcmHandle, vec[0].buf, amt); if(amt < 0) { ERR("read error: %s\n", snd_strerror(amt)); if(amt == -EAGAIN) continue; if((amt=snd_pcm_recover(self->pcmHandle, amt, 1)) >= 0) { if(self->doCapture) amt = snd_pcm_start(self->pcmHandle); if(amt >= 0) amt = snd_pcm_avail_update(self->pcmHandle); } if(amt < 0) { ERR("restore error: %s\n", snd_strerror(amt)); aluHandleDisconnect(device, "Capture recovery failure: %s", snd_strerror(amt)); break; } avail = amt; continue; } ll_ringbuffer_write_advance(self->ring, amt); avail -= amt; } return ll_ringbuffer_read_space(self->ring); } static ClockLatency ALCcaptureAlsa_getClockLatency(ALCcaptureAlsa *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; snd_pcm_sframes_t delay = 0; ClockLatency ret; int err; ALCcaptureAlsa_lock(self); ret.ClockTime = GetDeviceClockTime(device); if((err=snd_pcm_delay(self->pcmHandle, &delay)) < 0) { ERR("Failed to get pcm delay: %s\n", snd_strerror(err)); delay = 0; } if(delay < 0) delay = 0; ret.Latency = delay * DEVICE_CLOCK_RES / device->Frequency; ALCcaptureAlsa_unlock(self); return ret; } static inline void AppendAllDevicesList2(const DevMap *entry) { AppendAllDevicesList(alstr_get_cstr(entry->name)); } static inline void AppendCaptureDeviceList2(const DevMap *entry) { AppendCaptureDeviceList(alstr_get_cstr(entry->name)); } typedef struct ALCalsaBackendFactory { DERIVE_FROM_TYPE(ALCbackendFactory); } ALCalsaBackendFactory; #define ALCALSABACKENDFACTORY_INITIALIZER { { GET_VTABLE2(ALCalsaBackendFactory, ALCbackendFactory) } } static ALCboolean ALCalsaBackendFactory_init(ALCalsaBackendFactory* UNUSED(self)) { VECTOR_INIT(PlaybackDevices); VECTOR_INIT(CaptureDevices); if(!alsa_load()) return ALC_FALSE; return ALC_TRUE; } static void ALCalsaBackendFactory_deinit(ALCalsaBackendFactory* UNUSED(self)) { clear_devlist(&PlaybackDevices); VECTOR_DEINIT(PlaybackDevices); clear_devlist(&CaptureDevices); VECTOR_DEINIT(CaptureDevices); #ifdef HAVE_DYNLOAD if(alsa_handle) CloseLib(alsa_handle); alsa_handle = NULL; #endif } static ALCboolean ALCalsaBackendFactory_querySupport(ALCalsaBackendFactory* UNUSED(self), ALCbackend_Type type) { if(type == ALCbackend_Playback || type == ALCbackend_Capture) return ALC_TRUE; return ALC_FALSE; } static void ALCalsaBackendFactory_probe(ALCalsaBackendFactory* UNUSED(self), enum DevProbe type) { switch(type) { case ALL_DEVICE_PROBE: probe_devices(SND_PCM_STREAM_PLAYBACK, &PlaybackDevices); VECTOR_FOR_EACH(const DevMap, PlaybackDevices, AppendAllDevicesList2); break; case CAPTURE_DEVICE_PROBE: probe_devices(SND_PCM_STREAM_CAPTURE, &CaptureDevices); VECTOR_FOR_EACH(const DevMap, CaptureDevices, AppendCaptureDeviceList2); break; } } static ALCbackend* ALCalsaBackendFactory_createBackend(ALCalsaBackendFactory* UNUSED(self), ALCdevice *device, ALCbackend_Type type) { if(type == ALCbackend_Playback) { ALCplaybackAlsa *backend; NEW_OBJ(backend, ALCplaybackAlsa)(device); if(!backend) return NULL; return STATIC_CAST(ALCbackend, backend); } if(type == ALCbackend_Capture) { ALCcaptureAlsa *backend; NEW_OBJ(backend, ALCcaptureAlsa)(device); if(!backend) return NULL; return STATIC_CAST(ALCbackend, backend); } return NULL; } DEFINE_ALCBACKENDFACTORY_VTABLE(ALCalsaBackendFactory); ALCbackendFactory *ALCalsaBackendFactory_getFactory(void) { static ALCalsaBackendFactory factory = ALCALSABACKENDFACTORY_INITIALIZER; return STATIC_CAST(ALCbackendFactory, &factory); }