/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include "alMain.h" #include static const ALCchar alsaDevice[] = "ALSA Default"; #ifdef HAVE_DYNLOAD static void *alsa_handle; #define MAKE_FUNC(f) static typeof(f) * p##f MAKE_FUNC(snd_strerror); MAKE_FUNC(snd_pcm_open); MAKE_FUNC(snd_pcm_close); MAKE_FUNC(snd_pcm_nonblock); MAKE_FUNC(snd_pcm_frames_to_bytes); MAKE_FUNC(snd_pcm_bytes_to_frames); MAKE_FUNC(snd_pcm_hw_params_malloc); MAKE_FUNC(snd_pcm_hw_params_free); MAKE_FUNC(snd_pcm_hw_params_any); MAKE_FUNC(snd_pcm_hw_params_current); MAKE_FUNC(snd_pcm_hw_params_set_access); MAKE_FUNC(snd_pcm_hw_params_set_format); MAKE_FUNC(snd_pcm_hw_params_set_channels); MAKE_FUNC(snd_pcm_hw_params_set_periods_near); MAKE_FUNC(snd_pcm_hw_params_set_rate_near); MAKE_FUNC(snd_pcm_hw_params_set_rate); MAKE_FUNC(snd_pcm_hw_params_set_rate_resample); MAKE_FUNC(snd_pcm_hw_params_set_buffer_time_near); MAKE_FUNC(snd_pcm_hw_params_set_period_time_near); MAKE_FUNC(snd_pcm_hw_params_set_buffer_size_near); MAKE_FUNC(snd_pcm_hw_params_set_period_size_near); MAKE_FUNC(snd_pcm_hw_params_set_buffer_size_min); MAKE_FUNC(snd_pcm_hw_params_get_buffer_time_min); MAKE_FUNC(snd_pcm_hw_params_get_buffer_time_max); MAKE_FUNC(snd_pcm_hw_params_get_period_time_min); MAKE_FUNC(snd_pcm_hw_params_get_period_time_max); MAKE_FUNC(snd_pcm_hw_params_get_buffer_size); MAKE_FUNC(snd_pcm_hw_params_get_period_size); MAKE_FUNC(snd_pcm_hw_params_get_access); MAKE_FUNC(snd_pcm_hw_params_get_periods); MAKE_FUNC(snd_pcm_hw_params_test_format); MAKE_FUNC(snd_pcm_hw_params_test_channels); MAKE_FUNC(snd_pcm_hw_params); MAKE_FUNC(snd_pcm_sw_params_malloc); MAKE_FUNC(snd_pcm_sw_params_current); MAKE_FUNC(snd_pcm_sw_params_set_avail_min); MAKE_FUNC(snd_pcm_sw_params_set_stop_threshold); MAKE_FUNC(snd_pcm_sw_params); MAKE_FUNC(snd_pcm_sw_params_free); MAKE_FUNC(snd_pcm_prepare); MAKE_FUNC(snd_pcm_start); MAKE_FUNC(snd_pcm_resume); MAKE_FUNC(snd_pcm_reset); MAKE_FUNC(snd_pcm_wait); MAKE_FUNC(snd_pcm_state); MAKE_FUNC(snd_pcm_avail_update); MAKE_FUNC(snd_pcm_areas_silence); MAKE_FUNC(snd_pcm_mmap_begin); MAKE_FUNC(snd_pcm_mmap_commit); MAKE_FUNC(snd_pcm_readi); MAKE_FUNC(snd_pcm_writei); MAKE_FUNC(snd_pcm_drain); MAKE_FUNC(snd_pcm_drop); MAKE_FUNC(snd_pcm_recover); MAKE_FUNC(snd_pcm_info_malloc); MAKE_FUNC(snd_pcm_info_free); MAKE_FUNC(snd_pcm_info_set_device); MAKE_FUNC(snd_pcm_info_set_subdevice); MAKE_FUNC(snd_pcm_info_set_stream); MAKE_FUNC(snd_pcm_info_get_name); MAKE_FUNC(snd_ctl_pcm_next_device); MAKE_FUNC(snd_ctl_pcm_info); MAKE_FUNC(snd_ctl_open); MAKE_FUNC(snd_ctl_close); MAKE_FUNC(snd_ctl_card_info_malloc); MAKE_FUNC(snd_ctl_card_info_free); MAKE_FUNC(snd_ctl_card_info); MAKE_FUNC(snd_ctl_card_info_get_name); MAKE_FUNC(snd_ctl_card_info_get_id); MAKE_FUNC(snd_card_next); #undef MAKE_FUNC #define snd_strerror psnd_strerror #define snd_pcm_open psnd_pcm_open #define snd_pcm_close psnd_pcm_close #define snd_pcm_nonblock psnd_pcm_nonblock #define snd_pcm_frames_to_bytes psnd_pcm_frames_to_bytes #define snd_pcm_bytes_to_frames psnd_pcm_bytes_to_frames #define snd_pcm_hw_params_malloc psnd_pcm_hw_params_malloc #define snd_pcm_hw_params_free psnd_pcm_hw_params_free #define snd_pcm_hw_params_any psnd_pcm_hw_params_any #define snd_pcm_hw_params_current psnd_pcm_hw_params_current #define snd_pcm_hw_params_set_access psnd_pcm_hw_params_set_access #define snd_pcm_hw_params_set_format psnd_pcm_hw_params_set_format #define snd_pcm_hw_params_set_channels psnd_pcm_hw_params_set_channels #define snd_pcm_hw_params_set_periods_near psnd_pcm_hw_params_set_periods_near #define snd_pcm_hw_params_set_rate_near psnd_pcm_hw_params_set_rate_near #define snd_pcm_hw_params_set_rate psnd_pcm_hw_params_set_rate #define snd_pcm_hw_params_set_rate_resample psnd_pcm_hw_params_set_rate_resample #define snd_pcm_hw_params_set_buffer_time_near psnd_pcm_hw_params_set_buffer_time_near #define snd_pcm_hw_params_set_period_time_near psnd_pcm_hw_params_set_period_time_near #define snd_pcm_hw_params_set_buffer_size_near psnd_pcm_hw_params_set_buffer_size_near #define snd_pcm_hw_params_set_period_size_near psnd_pcm_hw_params_set_period_size_near #define snd_pcm_hw_params_set_buffer_size_min psnd_pcm_hw_params_set_buffer_size_min #define snd_pcm_hw_params_get_buffer_time_min psnd_pcm_hw_params_get_buffer_time_min #define snd_pcm_hw_params_get_buffer_time_max psnd_pcm_hw_params_get_buffer_time_max #define snd_pcm_hw_params_get_period_time_min psnd_pcm_hw_params_get_period_time_min #define snd_pcm_hw_params_get_period_time_max psnd_pcm_hw_params_get_period_time_max #define snd_pcm_hw_params_get_buffer_size psnd_pcm_hw_params_get_buffer_size #define snd_pcm_hw_params_get_period_size psnd_pcm_hw_params_get_period_size #define snd_pcm_hw_params_get_access psnd_pcm_hw_params_get_access #define snd_pcm_hw_params_get_periods psnd_pcm_hw_params_get_periods #define snd_pcm_hw_params_test_format psnd_pcm_hw_params_test_format #define snd_pcm_hw_params_test_channels psnd_pcm_hw_params_test_channels #define snd_pcm_hw_params psnd_pcm_hw_params #define snd_pcm_sw_params_malloc psnd_pcm_sw_params_malloc #define snd_pcm_sw_params_current psnd_pcm_sw_params_current #define snd_pcm_sw_params_set_avail_min psnd_pcm_sw_params_set_avail_min #define snd_pcm_sw_params_set_stop_threshold psnd_pcm_sw_params_set_stop_threshold #define snd_pcm_sw_params psnd_pcm_sw_params #define snd_pcm_sw_params_free psnd_pcm_sw_params_free #define snd_pcm_prepare psnd_pcm_prepare #define snd_pcm_start psnd_pcm_start #define snd_pcm_resume psnd_pcm_resume #define snd_pcm_reset psnd_pcm_reset #define snd_pcm_wait psnd_pcm_wait #define snd_pcm_state psnd_pcm_state #define snd_pcm_avail_update psnd_pcm_avail_update #define snd_pcm_areas_silence psnd_pcm_areas_silence #define snd_pcm_mmap_begin psnd_pcm_mmap_begin #define snd_pcm_mmap_commit psnd_pcm_mmap_commit #define snd_pcm_readi psnd_pcm_readi #define snd_pcm_writei psnd_pcm_writei #define snd_pcm_drain psnd_pcm_drain #define snd_pcm_drop psnd_pcm_drop #define snd_pcm_recover psnd_pcm_recover #define snd_pcm_info_malloc psnd_pcm_info_malloc #define snd_pcm_info_free psnd_pcm_info_free #define snd_pcm_info_set_device psnd_pcm_info_set_device #define snd_pcm_info_set_subdevice psnd_pcm_info_set_subdevice #define snd_pcm_info_set_stream psnd_pcm_info_set_stream #define snd_pcm_info_get_name psnd_pcm_info_get_name #define snd_ctl_pcm_next_device psnd_ctl_pcm_next_device #define snd_ctl_pcm_info psnd_ctl_pcm_info #define snd_ctl_open psnd_ctl_open #define snd_ctl_close psnd_ctl_close #define snd_ctl_card_info_malloc psnd_ctl_card_info_malloc #define snd_ctl_card_info_free psnd_ctl_card_info_free #define snd_ctl_card_info psnd_ctl_card_info #define snd_ctl_card_info_get_name psnd_ctl_card_info_get_name #define snd_ctl_card_info_get_id psnd_ctl_card_info_get_id #define snd_card_next psnd_card_next #endif static ALCboolean alsa_load(void) { #ifdef HAVE_DYNLOAD if(!alsa_handle) { alsa_handle = LoadLib("libasound.so.2"); if(!alsa_handle) return ALC_FALSE; #define LOAD_FUNC(f) do { \ p##f = GetSymbol(alsa_handle, #f); \ if(p##f == NULL) { \ CloseLib(alsa_handle); \ alsa_handle = NULL; \ return ALC_FALSE; \ } \ } while(0) LOAD_FUNC(snd_strerror); LOAD_FUNC(snd_pcm_open); LOAD_FUNC(snd_pcm_close); LOAD_FUNC(snd_pcm_nonblock); LOAD_FUNC(snd_pcm_frames_to_bytes); LOAD_FUNC(snd_pcm_bytes_to_frames); LOAD_FUNC(snd_pcm_hw_params_malloc); LOAD_FUNC(snd_pcm_hw_params_free); LOAD_FUNC(snd_pcm_hw_params_any); LOAD_FUNC(snd_pcm_hw_params_current); LOAD_FUNC(snd_pcm_hw_params_set_access); LOAD_FUNC(snd_pcm_hw_params_set_format); LOAD_FUNC(snd_pcm_hw_params_set_channels); LOAD_FUNC(snd_pcm_hw_params_set_periods_near); LOAD_FUNC(snd_pcm_hw_params_set_rate_near); LOAD_FUNC(snd_pcm_hw_params_set_rate); LOAD_FUNC(snd_pcm_hw_params_set_rate_resample); LOAD_FUNC(snd_pcm_hw_params_set_buffer_time_near); LOAD_FUNC(snd_pcm_hw_params_set_period_time_near); LOAD_FUNC(snd_pcm_hw_params_set_buffer_size_near); LOAD_FUNC(snd_pcm_hw_params_set_buffer_size_min); LOAD_FUNC(snd_pcm_hw_params_set_period_size_near); LOAD_FUNC(snd_pcm_hw_params_get_buffer_time_min); LOAD_FUNC(snd_pcm_hw_params_get_buffer_time_max); LOAD_FUNC(snd_pcm_hw_params_get_period_time_min); LOAD_FUNC(snd_pcm_hw_params_get_period_time_max); LOAD_FUNC(snd_pcm_hw_params_get_buffer_size); LOAD_FUNC(snd_pcm_hw_params_get_period_size); LOAD_FUNC(snd_pcm_hw_params_get_access); LOAD_FUNC(snd_pcm_hw_params_get_periods); LOAD_FUNC(snd_pcm_hw_params_test_format); LOAD_FUNC(snd_pcm_hw_params_test_channels); LOAD_FUNC(snd_pcm_hw_params); LOAD_FUNC(snd_pcm_sw_params_malloc); LOAD_FUNC(snd_pcm_sw_params_current); LOAD_FUNC(snd_pcm_sw_params_set_avail_min); LOAD_FUNC(snd_pcm_sw_params_set_stop_threshold); LOAD_FUNC(snd_pcm_sw_params); LOAD_FUNC(snd_pcm_sw_params_free); LOAD_FUNC(snd_pcm_prepare); LOAD_FUNC(snd_pcm_start); LOAD_FUNC(snd_pcm_resume); LOAD_FUNC(snd_pcm_reset); LOAD_FUNC(snd_pcm_wait); LOAD_FUNC(snd_pcm_state); LOAD_FUNC(snd_pcm_avail_update); LOAD_FUNC(snd_pcm_areas_silence); LOAD_FUNC(snd_pcm_mmap_begin); LOAD_FUNC(snd_pcm_mmap_commit); LOAD_FUNC(snd_pcm_readi); LOAD_FUNC(snd_pcm_writei); LOAD_FUNC(snd_pcm_drain); LOAD_FUNC(snd_pcm_drop); LOAD_FUNC(snd_pcm_recover); LOAD_FUNC(snd_pcm_info_malloc); LOAD_FUNC(snd_pcm_info_free); LOAD_FUNC(snd_pcm_info_set_device); LOAD_FUNC(snd_pcm_info_set_subdevice); LOAD_FUNC(snd_pcm_info_set_stream); LOAD_FUNC(snd_pcm_info_get_name); LOAD_FUNC(snd_ctl_pcm_next_device); LOAD_FUNC(snd_ctl_pcm_info); LOAD_FUNC(snd_ctl_open); LOAD_FUNC(snd_ctl_close); LOAD_FUNC(snd_ctl_card_info_malloc); LOAD_FUNC(snd_ctl_card_info_free); LOAD_FUNC(snd_ctl_card_info); LOAD_FUNC(snd_ctl_card_info_get_name); LOAD_FUNC(snd_ctl_card_info_get_id); LOAD_FUNC(snd_card_next); #undef LOAD_FUNC } #endif return ALC_TRUE; } typedef struct { snd_pcm_t *pcmHandle; ALvoid *buffer; ALsizei size; ALboolean doCapture; RingBuffer *ring; snd_pcm_sframes_t last_avail; volatile int killNow; ALvoid *thread; } alsa_data; typedef struct { ALCchar *name; char *device; } DevMap; static DevMap *allDevNameMap; static ALuint numDevNames; static DevMap *allCaptureDevNameMap; static ALuint numCaptureDevNames; static const char *prefix_name(snd_pcm_stream_t stream) { assert(stream == SND_PCM_STREAM_PLAYBACK || stream == SND_PCM_STREAM_CAPTURE); return (stream==SND_PCM_STREAM_PLAYBACK) ? "device-prefix" : "capture-prefix"; } static DevMap *probe_devices(snd_pcm_stream_t stream, ALuint *count) { const char *main_prefix = "plughw:"; snd_ctl_t *handle; int card, err, dev, idx; snd_ctl_card_info_t *info; snd_pcm_info_t *pcminfo; DevMap *DevList; snd_ctl_card_info_malloc(&info); snd_pcm_info_malloc(&pcminfo); DevList = malloc(sizeof(DevMap) * 1); DevList[0].name = strdup(alsaDevice); DevList[0].device = strdup(GetConfigValue("alsa", (stream==SND_PCM_STREAM_PLAYBACK) ? "device" : "capture", "default")); idx = 1; card = -1; if((err=snd_card_next(&card)) < 0) ERR("Failed to find a card: %s\n", snd_strerror(err)); ConfigValueStr("alsa", prefix_name(stream), &main_prefix); while(card >= 0) { const char *card_prefix = main_prefix; const char *cardname, *cardid; char name[256]; snprintf(name, sizeof(name), "hw:%d", card); if((err = snd_ctl_open(&handle, name, 0)) < 0) { ERR("control open (hw:%d): %s\n", card, snd_strerror(err)); goto next_card; } if((err = snd_ctl_card_info(handle, info)) < 0) { ERR("control hardware info (hw:%d): %s\n", card, snd_strerror(err)); snd_ctl_close(handle); goto next_card; } cardname = snd_ctl_card_info_get_name(info); cardid = snd_ctl_card_info_get_id(info); snprintf(name, sizeof(name), "%s-%s", prefix_name(stream), cardid); ConfigValueStr("alsa", name, &card_prefix); dev = -1; while(1) { const char *devname; void *temp; if(snd_ctl_pcm_next_device(handle, &dev) < 0) ERR("snd_ctl_pcm_next_device failed\n"); if(dev < 0) break; snd_pcm_info_set_device(pcminfo, dev); snd_pcm_info_set_subdevice(pcminfo, 0); snd_pcm_info_set_stream(pcminfo, stream); if((err = snd_ctl_pcm_info(handle, pcminfo)) < 0) { if(err != -ENOENT) ERR("control digital audio info (hw:%d): %s\n", card, snd_strerror(err)); continue; } temp = realloc(DevList, sizeof(DevMap) * (idx+1)); if(temp) { const char *device_prefix = card_prefix; char device[128]; DevList = temp; devname = snd_pcm_info_get_name(pcminfo); snprintf(name, sizeof(name), "%s-%s-%d", prefix_name(stream), cardid, dev); ConfigValueStr("alsa", name, &device_prefix); snprintf(name, sizeof(name), "%s, %s (CARD=%s,DEV=%d)", cardname, devname, cardid, dev); snprintf(device, sizeof(device), "%sCARD=%s,DEV=%d", device_prefix, cardid, dev); TRACE("Got device \"%s\", \"%s\"\n", name, device); DevList[idx].name = strdup(name); DevList[idx].device = strdup(device); idx++; } } snd_ctl_close(handle); next_card: if(snd_card_next(&card) < 0) { ERR("snd_card_next failed\n"); break; } } snd_pcm_info_free(pcminfo); snd_ctl_card_info_free(info); *count = idx; return DevList; } static int verify_state(snd_pcm_t *handle) { snd_pcm_state_t state = snd_pcm_state(handle); int err; switch(state) { case SND_PCM_STATE_OPEN: case SND_PCM_STATE_SETUP: case SND_PCM_STATE_PREPARED: case SND_PCM_STATE_RUNNING: case SND_PCM_STATE_DRAINING: case SND_PCM_STATE_PAUSED: /* All Okay */ break; case SND_PCM_STATE_XRUN: if((err=snd_pcm_recover(handle, -EPIPE, 1)) < 0) return err; break; case SND_PCM_STATE_SUSPENDED: if((err=snd_pcm_recover(handle, -ESTRPIPE, 1)) < 0) return err; break; case SND_PCM_STATE_DISCONNECTED: return -ENODEV; } return state; } static ALuint ALSAProc(ALvoid *ptr) { ALCdevice *Device = (ALCdevice*)ptr; alsa_data *data = (alsa_data*)Device->ExtraData; const snd_pcm_channel_area_t *areas = NULL; snd_pcm_uframes_t update_size, num_updates; snd_pcm_sframes_t avail, commitres; snd_pcm_uframes_t offset, frames; char *WritePtr; int err; SetRTPriority(); update_size = Device->UpdateSize; num_updates = Device->NumUpdates; while(!data->killNow) { int state = verify_state(data->pcmHandle); if(state < 0) { ERR("Invalid state detected: %s\n", snd_strerror(state)); aluHandleDisconnect(Device); break; } avail = snd_pcm_avail_update(data->pcmHandle); if(avail < 0) { ERR("available update failed: %s\n", snd_strerror(avail)); continue; } if((snd_pcm_uframes_t)avail > update_size*(num_updates+1)) { WARN("available samples exceeds the buffer size\n"); snd_pcm_reset(data->pcmHandle); continue; } // make sure there's frames to process if((snd_pcm_uframes_t)avail < update_size) { if(state != SND_PCM_STATE_RUNNING) { err = snd_pcm_start(data->pcmHandle); if(err < 0) { ERR("start failed: %s\n", snd_strerror(err)); continue; } } if(snd_pcm_wait(data->pcmHandle, 1000) == 0) ERR("Wait timeout... buffer size too low?\n"); continue; } avail -= avail%update_size; // it is possible that contiguous areas are smaller, thus we use a loop while(avail > 0) { frames = avail; err = snd_pcm_mmap_begin(data->pcmHandle, &areas, &offset, &frames); if(err < 0) { ERR("mmap begin error: %s\n", snd_strerror(err)); break; } WritePtr = (char*)areas->addr + (offset * areas->step / 8); aluMixData(Device, WritePtr, frames); commitres = snd_pcm_mmap_commit(data->pcmHandle, offset, frames); if(commitres < 0 || (commitres-frames) != 0) { ERR("mmap commit error: %s\n", snd_strerror(commitres >= 0 ? -EPIPE : commitres)); break; } avail -= frames; } } return 0; } static ALuint ALSANoMMapProc(ALvoid *ptr) { ALCdevice *Device = (ALCdevice*)ptr; alsa_data *data = (alsa_data*)Device->ExtraData; snd_pcm_sframes_t avail; char *WritePtr; SetRTPriority(); while(!data->killNow) { int state = verify_state(data->pcmHandle); if(state < 0) { ERR("Invalid state detected: %s\n", snd_strerror(state)); aluHandleDisconnect(Device); break; } WritePtr = data->buffer; avail = data->size / snd_pcm_frames_to_bytes(data->pcmHandle, 1); aluMixData(Device, WritePtr, avail); while(avail > 0) { int ret = snd_pcm_writei(data->pcmHandle, WritePtr, avail); switch (ret) { case -EAGAIN: continue; case -ESTRPIPE: case -EPIPE: case -EINTR: ret = snd_pcm_recover(data->pcmHandle, ret, 1); if(ret < 0) avail = 0; break; default: if (ret >= 0) { WritePtr += snd_pcm_frames_to_bytes(data->pcmHandle, ret); avail -= ret; } break; } if (ret < 0) { ret = snd_pcm_prepare(data->pcmHandle); if(ret < 0) break; } } } return 0; } static ALCenum alsa_open_playback(ALCdevice *device, const ALCchar *deviceName) { const char *driver = NULL; alsa_data *data; int err; if(deviceName) { size_t idx; if(!allDevNameMap) allDevNameMap = probe_devices(SND_PCM_STREAM_PLAYBACK, &numDevNames); for(idx = 0;idx < numDevNames;idx++) { if(strcmp(deviceName, allDevNameMap[idx].name) == 0) { driver = allDevNameMap[idx].device; break; } } if(idx == numDevNames) return ALC_INVALID_VALUE; } else { deviceName = alsaDevice; driver = GetConfigValue("alsa", "device", "default"); } data = (alsa_data*)calloc(1, sizeof(alsa_data)); err = snd_pcm_open(&data->pcmHandle, driver, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK); if(err >= 0) { err = snd_pcm_nonblock(data->pcmHandle, 0); if(err < 0) snd_pcm_close(data->pcmHandle); } if(err < 0) { free(data); ERR("Could not open playback device '%s': %s\n", driver, snd_strerror(err)); return ALC_OUT_OF_MEMORY; } device->DeviceName = strdup(deviceName); device->ExtraData = data; return ALC_NO_ERROR; } static void alsa_close_playback(ALCdevice *device) { alsa_data *data = (alsa_data*)device->ExtraData; snd_pcm_close(data->pcmHandle); free(data); device->ExtraData = NULL; } static ALCboolean alsa_reset_playback(ALCdevice *device) { alsa_data *data = (alsa_data*)device->ExtraData; snd_pcm_uframes_t periodSizeInFrames; unsigned int periodLen, bufferLen; snd_pcm_sw_params_t *sp = NULL; snd_pcm_hw_params_t *hp = NULL; snd_pcm_access_t access; snd_pcm_format_t format; unsigned int periods; unsigned int rate; const char *funcerr; int allowmmap; int err; format = -1; switch(device->FmtType) { case DevFmtByte: format = SND_PCM_FORMAT_S8; break; case DevFmtUByte: format = SND_PCM_FORMAT_U8; break; case DevFmtShort: format = SND_PCM_FORMAT_S16; break; case DevFmtUShort: format = SND_PCM_FORMAT_U16; break; case DevFmtInt: format = SND_PCM_FORMAT_S32; break; case DevFmtUInt: format = SND_PCM_FORMAT_U32; break; case DevFmtFloat: format = SND_PCM_FORMAT_FLOAT; break; } allowmmap = GetConfigValueBool("alsa", "mmap", 1); periods = device->NumUpdates; periodLen = (ALuint64)device->UpdateSize * 1000000 / device->Frequency; bufferLen = periodLen * periods; rate = device->Frequency; snd_pcm_hw_params_malloc(&hp); #define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error CHECK(snd_pcm_hw_params_any(data->pcmHandle, hp)); /* set interleaved access */ if(!allowmmap || snd_pcm_hw_params_set_access(data->pcmHandle, hp, SND_PCM_ACCESS_MMAP_INTERLEAVED) < 0) { if(periods > 2) { periods--; bufferLen = periodLen * periods; } CHECK(snd_pcm_hw_params_set_access(data->pcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED)); } /* test and set format (implicitly sets sample bits) */ if(snd_pcm_hw_params_test_format(data->pcmHandle, hp, format) < 0) { static const struct { snd_pcm_format_t format; enum DevFmtType fmttype; } formatlist[] = { { SND_PCM_FORMAT_FLOAT, DevFmtFloat }, { SND_PCM_FORMAT_S32, DevFmtInt }, { SND_PCM_FORMAT_U32, DevFmtUInt }, { SND_PCM_FORMAT_S16, DevFmtShort }, { SND_PCM_FORMAT_U16, DevFmtUShort }, { SND_PCM_FORMAT_S8, DevFmtByte }, { SND_PCM_FORMAT_U8, DevFmtUByte }, }; size_t k; for(k = 0;k < COUNTOF(formatlist);k++) { format = formatlist[k].format; if(snd_pcm_hw_params_test_format(data->pcmHandle, hp, format) >= 0) { device->FmtType = formatlist[k].fmttype; break; } } } CHECK(snd_pcm_hw_params_set_format(data->pcmHandle, hp, format)); /* test and set channels (implicitly sets frame bits) */ if(snd_pcm_hw_params_test_channels(data->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans)) < 0) { static const enum DevFmtChannels channellist[] = { DevFmtStereo, DevFmtQuad, DevFmtX51, DevFmtX71, DevFmtMono, }; size_t k; for(k = 0;k < COUNTOF(channellist);k++) { if(snd_pcm_hw_params_test_channels(data->pcmHandle, hp, ChannelsFromDevFmt(channellist[k])) >= 0) { device->FmtChans = channellist[k]; break; } } } CHECK(snd_pcm_hw_params_set_channels(data->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans))); /* set rate (implicitly constrains period/buffer parameters) */ if(snd_pcm_hw_params_set_rate_resample(data->pcmHandle, hp, 0) < 0) ERR("Failed to disable ALSA resampler\n"); CHECK(snd_pcm_hw_params_set_rate_near(data->pcmHandle, hp, &rate, NULL)); /* set buffer time (implicitly constrains period/buffer parameters) */ if(snd_pcm_hw_params_set_buffer_time_near(data->pcmHandle, hp, &bufferLen, NULL) < 0) { unsigned int mintime, maxtime; CHECK(snd_pcm_hw_params_get_buffer_time_min(hp, &mintime, NULL)); CHECK(snd_pcm_hw_params_get_buffer_time_max(hp, &maxtime, NULL)); TRACE("Failed to set %uus buffer time, detected range: %u -> %u\n", bufferLen, mintime, maxtime); bufferLen = clampu(bufferLen, mintime, maxtime); periodLen = minu(periodLen, bufferLen/2); CHECK(snd_pcm_hw_params_set_buffer_time_near(data->pcmHandle, hp, &bufferLen, NULL)); } /* set period time (implicitly sets buffer size/bytes/time and period size/bytes) */ if(snd_pcm_hw_params_set_period_time_near(data->pcmHandle, hp, &periodLen, NULL) < 0) { unsigned int mintime, maxtime; CHECK(snd_pcm_hw_params_get_period_time_min(hp, &mintime, NULL)); CHECK(snd_pcm_hw_params_get_period_time_max(hp, &maxtime, NULL)); TRACE("Failed to set %uus period time, detected range: %u -> %u\n", periodLen, mintime, maxtime); periodLen = clampu(periodLen, mintime, maxtime); CHECK(snd_pcm_hw_params_set_period_time_near(data->pcmHandle, hp, &periodLen, NULL)); } /* install and prepare hardware configuration */ CHECK(snd_pcm_hw_params(data->pcmHandle, hp)); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_access(hp, &access)); CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, NULL)); CHECK(snd_pcm_hw_params_get_periods(hp, &periods, NULL)); snd_pcm_hw_params_free(hp); hp = NULL; snd_pcm_sw_params_malloc(&sp); CHECK(snd_pcm_sw_params_current(data->pcmHandle, sp)); CHECK(snd_pcm_sw_params_set_avail_min(data->pcmHandle, sp, periodSizeInFrames)); CHECK(snd_pcm_sw_params_set_stop_threshold(data->pcmHandle, sp, periodSizeInFrames*periods)); CHECK(snd_pcm_sw_params(data->pcmHandle, sp)); #undef CHECK snd_pcm_sw_params_free(sp); sp = NULL; /* Increase periods by one, since the temp buffer counts as an extra * period */ if(access == SND_PCM_ACCESS_RW_INTERLEAVED) device->NumUpdates = periods+1; else device->NumUpdates = periods; device->UpdateSize = periodSizeInFrames; device->Frequency = rate; SetDefaultChannelOrder(device); return ALC_TRUE; error: ERR("%s failed: %s\n", funcerr, snd_strerror(err)); if(hp) snd_pcm_hw_params_free(hp); if(sp) snd_pcm_sw_params_free(sp); return ALC_FALSE; } static ALCboolean alsa_start_playback(ALCdevice *device) { alsa_data *data = (alsa_data*)device->ExtraData; snd_pcm_hw_params_t *hp = NULL; snd_pcm_access_t access; const char *funcerr; int err; snd_pcm_hw_params_malloc(&hp); #define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error CHECK(snd_pcm_hw_params_current(data->pcmHandle, hp)); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_access(hp, &access)); #undef CHECK snd_pcm_hw_params_free(hp); hp = NULL; data->size = snd_pcm_frames_to_bytes(data->pcmHandle, device->UpdateSize); if(access == SND_PCM_ACCESS_RW_INTERLEAVED) { data->buffer = malloc(data->size); if(!data->buffer) { ERR("buffer malloc failed\n"); return ALC_FALSE; } data->thread = StartThread(ALSANoMMapProc, device); } else { err = snd_pcm_prepare(data->pcmHandle); if(err < 0) { ERR("snd_pcm_prepare(data->pcmHandle) failed: %s\n", snd_strerror(err)); return ALC_FALSE; } data->thread = StartThread(ALSAProc, device); } if(data->thread == NULL) { ERR("Could not create playback thread\n"); free(data->buffer); data->buffer = NULL; return ALC_FALSE; } return ALC_TRUE; error: ERR("%s failed: %s\n", funcerr, snd_strerror(err)); if(hp) snd_pcm_hw_params_free(hp); return ALC_FALSE; } static void alsa_stop_playback(ALCdevice *device) { alsa_data *data = (alsa_data*)device->ExtraData; if(data->thread) { data->killNow = 1; StopThread(data->thread); data->thread = NULL; } data->killNow = 0; free(data->buffer); data->buffer = NULL; } static ALCenum alsa_open_capture(ALCdevice *Device, const ALCchar *deviceName) { const char *driver = NULL; snd_pcm_hw_params_t *hp; snd_pcm_uframes_t bufferSizeInFrames; snd_pcm_uframes_t periodSizeInFrames; ALboolean needring = AL_FALSE; snd_pcm_format_t format; const char *funcerr; alsa_data *data; int err; if(deviceName) { size_t idx; if(!allCaptureDevNameMap) allCaptureDevNameMap = probe_devices(SND_PCM_STREAM_CAPTURE, &numCaptureDevNames); for(idx = 0;idx < numCaptureDevNames;idx++) { if(strcmp(deviceName, allCaptureDevNameMap[idx].name) == 0) { driver = allCaptureDevNameMap[idx].device; break; } } if(idx == numCaptureDevNames) return ALC_INVALID_VALUE; } else { deviceName = alsaDevice; driver = GetConfigValue("alsa", "capture", "default"); } data = (alsa_data*)calloc(1, sizeof(alsa_data)); err = snd_pcm_open(&data->pcmHandle, driver, SND_PCM_STREAM_CAPTURE, SND_PCM_NONBLOCK); if(err < 0) { ERR("Could not open capture device '%s': %s\n", driver, snd_strerror(err)); free(data); return ALC_INVALID_VALUE; } format = -1; switch(Device->FmtType) { case DevFmtByte: format = SND_PCM_FORMAT_S8; break; case DevFmtUByte: format = SND_PCM_FORMAT_U8; break; case DevFmtShort: format = SND_PCM_FORMAT_S16; break; case DevFmtUShort: format = SND_PCM_FORMAT_U16; break; case DevFmtInt: format = SND_PCM_FORMAT_S32; break; case DevFmtUInt: format = SND_PCM_FORMAT_U32; break; case DevFmtFloat: format = SND_PCM_FORMAT_FLOAT; break; } funcerr = NULL; bufferSizeInFrames = maxu(Device->UpdateSize*Device->NumUpdates, 100*Device->Frequency/1000); periodSizeInFrames = minu(bufferSizeInFrames, 25*Device->Frequency/1000); snd_pcm_hw_params_malloc(&hp); #define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error CHECK(snd_pcm_hw_params_any(data->pcmHandle, hp)); /* set interleaved access */ CHECK(snd_pcm_hw_params_set_access(data->pcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED)); /* set format (implicitly sets sample bits) */ CHECK(snd_pcm_hw_params_set_format(data->pcmHandle, hp, format)); /* set channels (implicitly sets frame bits) */ CHECK(snd_pcm_hw_params_set_channels(data->pcmHandle, hp, ChannelsFromDevFmt(Device->FmtChans))); /* set rate (implicitly constrains period/buffer parameters) */ CHECK(snd_pcm_hw_params_set_rate(data->pcmHandle, hp, Device->Frequency, 0)); /* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */ if(snd_pcm_hw_params_set_buffer_size_min(data->pcmHandle, hp, &bufferSizeInFrames) < 0) { TRACE("Buffer too large, using intermediate ring buffer\n"); needring = AL_TRUE; CHECK(snd_pcm_hw_params_set_buffer_size_near(data->pcmHandle, hp, &bufferSizeInFrames)); } /* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */ CHECK(snd_pcm_hw_params_set_period_size_near(data->pcmHandle, hp, &periodSizeInFrames, NULL)); /* install and prepare hardware configuration */ CHECK(snd_pcm_hw_params(data->pcmHandle, hp)); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, NULL)); #undef CHECK snd_pcm_hw_params_free(hp); hp = NULL; if(needring) { data->ring = CreateRingBuffer(FrameSizeFromDevFmt(Device->FmtChans, Device->FmtType), Device->UpdateSize*Device->NumUpdates); if(!data->ring) { ERR("ring buffer create failed\n"); goto error2; } data->size = snd_pcm_frames_to_bytes(data->pcmHandle, periodSizeInFrames); data->buffer = malloc(data->size); if(!data->buffer) { ERR("buffer malloc failed\n"); goto error2; } } Device->DeviceName = strdup(deviceName); Device->ExtraData = data; return ALC_NO_ERROR; error: ERR("%s failed: %s\n", funcerr, snd_strerror(err)); if(hp) snd_pcm_hw_params_free(hp); error2: free(data->buffer); DestroyRingBuffer(data->ring); snd_pcm_close(data->pcmHandle); free(data); Device->ExtraData = NULL; return ALC_INVALID_VALUE; } static void alsa_close_capture(ALCdevice *Device) { alsa_data *data = (alsa_data*)Device->ExtraData; snd_pcm_close(data->pcmHandle); DestroyRingBuffer(data->ring); free(data->buffer); free(data); Device->ExtraData = NULL; } static void alsa_start_capture(ALCdevice *Device) { alsa_data *data = (alsa_data*)Device->ExtraData; int err; err = snd_pcm_start(data->pcmHandle); if(err < 0) { ERR("start failed: %s\n", snd_strerror(err)); aluHandleDisconnect(Device); } else data->doCapture = AL_TRUE; } static ALCenum alsa_capture_samples(ALCdevice *Device, ALCvoid *Buffer, ALCuint Samples) { alsa_data *data = (alsa_data*)Device->ExtraData; if(data->ring) { ReadRingBuffer(data->ring, Buffer, Samples); return ALC_NO_ERROR; } data->last_avail -= Samples; while(Device->Connected && Samples > 0) { snd_pcm_sframes_t amt = 0; if(data->size > 0) { /* First get any data stored from the last stop */ amt = snd_pcm_bytes_to_frames(data->pcmHandle, data->size); if((snd_pcm_uframes_t)amt > Samples) amt = Samples; amt = snd_pcm_frames_to_bytes(data->pcmHandle, amt); memmove(Buffer, data->buffer, amt); if(data->size > amt) { memmove(data->buffer, data->buffer+amt, data->size - amt); data->size -= amt; } else { free(data->buffer); data->buffer = NULL; data->size = 0; } amt = snd_pcm_bytes_to_frames(data->pcmHandle, amt); } else if(data->doCapture) amt = snd_pcm_readi(data->pcmHandle, Buffer, Samples); if(amt < 0) { ERR("read error: %s\n", snd_strerror(amt)); if(amt == -EAGAIN) continue; if((amt=snd_pcm_recover(data->pcmHandle, amt, 1)) >= 0) { amt = snd_pcm_start(data->pcmHandle); if(amt >= 0) amt = snd_pcm_avail_update(data->pcmHandle); } if(amt < 0) { ERR("restore error: %s\n", snd_strerror(amt)); aluHandleDisconnect(Device); break; } /* If the amount available is less than what's asked, we lost it * during recovery. So just give silence instead. */ if((snd_pcm_uframes_t)amt < Samples) break; continue; } Buffer = (ALbyte*)Buffer + amt; Samples -= amt; } if(Samples > 0) memset(Buffer, ((Device->FmtType == DevFmtUByte) ? 0x80 : 0), snd_pcm_frames_to_bytes(data->pcmHandle, Samples)); return ALC_NO_ERROR; } static ALCuint alsa_available_samples(ALCdevice *Device) { alsa_data *data = (alsa_data*)Device->ExtraData; snd_pcm_sframes_t avail = 0; if(Device->Connected && data->doCapture) avail = snd_pcm_avail_update(data->pcmHandle); if(avail < 0) { ERR("avail update failed: %s\n", snd_strerror(avail)); if((avail=snd_pcm_recover(data->pcmHandle, avail, 1)) >= 0) { if(data->doCapture) avail = snd_pcm_start(data->pcmHandle); if(avail >= 0) avail = snd_pcm_avail_update(data->pcmHandle); } if(avail < 0) { ERR("restore error: %s\n", snd_strerror(avail)); aluHandleDisconnect(Device); } } if(!data->ring) { if(avail < 0) avail = 0; avail += snd_pcm_bytes_to_frames(data->pcmHandle, data->size); if(avail > data->last_avail) data->last_avail = avail; return data->last_avail; } while(avail > 0) { snd_pcm_sframes_t amt; amt = snd_pcm_bytes_to_frames(data->pcmHandle, data->size); if(avail < amt) amt = avail; amt = snd_pcm_readi(data->pcmHandle, data->buffer, amt); if(amt < 0) { ERR("read error: %s\n", snd_strerror(amt)); if(amt == -EAGAIN) continue; if((amt=snd_pcm_recover(data->pcmHandle, amt, 1)) >= 0) { if(data->doCapture) amt = snd_pcm_start(data->pcmHandle); if(amt >= 0) amt = snd_pcm_avail_update(data->pcmHandle); } if(amt < 0) { ERR("restore error: %s\n", snd_strerror(amt)); aluHandleDisconnect(Device); break; } avail = amt; continue; } WriteRingBuffer(data->ring, data->buffer, amt); avail -= amt; } return RingBufferSize(data->ring); } static void alsa_stop_capture(ALCdevice *Device) { alsa_data *data = (alsa_data*)Device->ExtraData; ALCuint avail; int err; /* OpenAL requires access to unread audio after stopping, but ALSA's * snd_pcm_drain is unreliable and snd_pcm_drop drops it. Capture what's * available now so it'll be available later after the drop. */ avail = alsa_available_samples(Device); if(!data->ring && avail > 0) { /* The ring buffer implicitly captures when checking availability. * Direct access needs to explicitly capture it into temp storage. */ ALsizei size; void *ptr; size = snd_pcm_frames_to_bytes(data->pcmHandle, avail); ptr = realloc(data->buffer, size); if(ptr) { data->buffer = ptr; alsa_capture_samples(Device, data->buffer, avail); data->size = size; } } err = snd_pcm_drop(data->pcmHandle); if(err < 0) ERR("drop failed: %s\n", snd_strerror(err)); data->doCapture = AL_FALSE; } static const BackendFuncs alsa_funcs = { alsa_open_playback, alsa_close_playback, alsa_reset_playback, alsa_start_playback, alsa_stop_playback, alsa_open_capture, alsa_close_capture, alsa_start_capture, alsa_stop_capture, alsa_capture_samples, alsa_available_samples }; ALCboolean alc_alsa_init(BackendFuncs *func_list) { if(!alsa_load()) return ALC_FALSE; *func_list = alsa_funcs; return ALC_TRUE; } void alc_alsa_deinit(void) { ALuint i; for(i = 0;i < numDevNames;++i) { free(allDevNameMap[i].name); free(allDevNameMap[i].device); } free(allDevNameMap); allDevNameMap = NULL; numDevNames = 0; for(i = 0;i < numCaptureDevNames;++i) { free(allCaptureDevNameMap[i].name); free(allCaptureDevNameMap[i].device); } free(allCaptureDevNameMap); allCaptureDevNameMap = NULL; numCaptureDevNames = 0; #ifdef HAVE_DYNLOAD if(alsa_handle) CloseLib(alsa_handle); alsa_handle = NULL; #endif } void alc_alsa_probe(enum DevProbe type) { ALuint i; switch(type) { case ALL_DEVICE_PROBE: for(i = 0;i < numDevNames;++i) { free(allDevNameMap[i].name); free(allDevNameMap[i].device); } free(allDevNameMap); allDevNameMap = probe_devices(SND_PCM_STREAM_PLAYBACK, &numDevNames); for(i = 0;i < numDevNames;++i) AppendAllDevicesList(allDevNameMap[i].name); break; case CAPTURE_DEVICE_PROBE: for(i = 0;i < numCaptureDevNames;++i) { free(allCaptureDevNameMap[i].name); free(allCaptureDevNameMap[i].device); } free(allCaptureDevNameMap); allCaptureDevNameMap = probe_devices(SND_PCM_STREAM_CAPTURE, &numCaptureDevNames); for(i = 0;i < numCaptureDevNames;++i) AppendCaptureDeviceList(allCaptureDevNameMap[i].name); break; } }