/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include "alMain.h" #include "alu.h" #include "ringbuffer.h" #include #include #include #include "backends/base.h" static const ALCchar ca_device[] = "CoreAudio Default"; typedef struct ALCcoreAudioPlayback { DERIVE_FROM_TYPE(ALCbackend); AudioUnit audioUnit; ALuint frameSize; AudioStreamBasicDescription format; // This is the OpenAL format as a CoreAudio ASBD } ALCcoreAudioPlayback; static void ALCcoreAudioPlayback_Construct(ALCcoreAudioPlayback *self, ALCdevice *device); static void ALCcoreAudioPlayback_Destruct(ALCcoreAudioPlayback *self); static ALCenum ALCcoreAudioPlayback_open(ALCcoreAudioPlayback *self, const ALCchar *name); static ALCboolean ALCcoreAudioPlayback_reset(ALCcoreAudioPlayback *self); static ALCboolean ALCcoreAudioPlayback_start(ALCcoreAudioPlayback *self); static void ALCcoreAudioPlayback_stop(ALCcoreAudioPlayback *self); static DECLARE_FORWARD2(ALCcoreAudioPlayback, ALCbackend, ALCenum, captureSamples, void*, ALCuint) static DECLARE_FORWARD(ALCcoreAudioPlayback, ALCbackend, ALCuint, availableSamples) static DECLARE_FORWARD(ALCcoreAudioPlayback, ALCbackend, ClockLatency, getClockLatency) static DECLARE_FORWARD(ALCcoreAudioPlayback, ALCbackend, void, lock) static DECLARE_FORWARD(ALCcoreAudioPlayback, ALCbackend, void, unlock) DECLARE_DEFAULT_ALLOCATORS(ALCcoreAudioPlayback) DEFINE_ALCBACKEND_VTABLE(ALCcoreAudioPlayback); static void ALCcoreAudioPlayback_Construct(ALCcoreAudioPlayback *self, ALCdevice *device) { ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(ALCcoreAudioPlayback, ALCbackend, self); self->frameSize = 0; memset(&self->format, 0, sizeof(self->format)); } static void ALCcoreAudioPlayback_Destruct(ALCcoreAudioPlayback *self) { AudioUnitUninitialize(self->audioUnit); AudioComponentInstanceDispose(self->audioUnit); ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); } static OSStatus ALCcoreAudioPlayback_MixerProc(void *inRefCon, AudioUnitRenderActionFlags* UNUSED(ioActionFlags), const AudioTimeStamp* UNUSED(inTimeStamp), UInt32 UNUSED(inBusNumber), UInt32 UNUSED(inNumberFrames), AudioBufferList *ioData) { ALCcoreAudioPlayback *self = inRefCon; ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice; ALCcoreAudioPlayback_lock(self); aluMixData(device, ioData->mBuffers[0].mData, ioData->mBuffers[0].mDataByteSize / self->frameSize); ALCcoreAudioPlayback_unlock(self); return noErr; } static ALCenum ALCcoreAudioPlayback_open(ALCcoreAudioPlayback *self, const ALCchar *name) { ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice; AudioComponentDescription desc; AudioComponent comp; OSStatus err; if(!name) name = ca_device; else if(strcmp(name, ca_device) != 0) return ALC_INVALID_VALUE; /* open the default output unit */ desc.componentType = kAudioUnitType_Output; #if TARGET_OS_IOS desc.componentSubType = kAudioUnitSubType_RemoteIO; #else desc.componentSubType = kAudioUnitSubType_DefaultOutput; #endif desc.componentManufacturer = kAudioUnitManufacturer_Apple; desc.componentFlags = 0; desc.componentFlagsMask = 0; comp = AudioComponentFindNext(NULL, &desc); if(comp == NULL) { ERR("AudioComponentFindNext failed\n"); return ALC_INVALID_VALUE; } err = AudioComponentInstanceNew(comp, &self->audioUnit); if(err != noErr) { ERR("AudioComponentInstanceNew failed\n"); return ALC_INVALID_VALUE; } /* init and start the default audio unit... */ err = AudioUnitInitialize(self->audioUnit); if(err != noErr) { ERR("AudioUnitInitialize failed\n"); AudioComponentInstanceDispose(self->audioUnit); return ALC_INVALID_VALUE; } alstr_copy_cstr(&device->DeviceName, name); return ALC_NO_ERROR; } static ALCboolean ALCcoreAudioPlayback_reset(ALCcoreAudioPlayback *self) { ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice; AudioStreamBasicDescription streamFormat; AURenderCallbackStruct input; OSStatus err; UInt32 size; err = AudioUnitUninitialize(self->audioUnit); if(err != noErr) ERR("-- AudioUnitUninitialize failed.\n"); /* retrieve default output unit's properties (output side) */ size = sizeof(AudioStreamBasicDescription); err = AudioUnitGetProperty(self->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 0, &streamFormat, &size); if(err != noErr || size != sizeof(AudioStreamBasicDescription)) { ERR("AudioUnitGetProperty failed\n"); return ALC_FALSE; } #if 0 TRACE("Output streamFormat of default output unit -\n"); TRACE(" streamFormat.mFramesPerPacket = %d\n", streamFormat.mFramesPerPacket); TRACE(" streamFormat.mChannelsPerFrame = %d\n", streamFormat.mChannelsPerFrame); TRACE(" streamFormat.mBitsPerChannel = %d\n", streamFormat.mBitsPerChannel); TRACE(" streamFormat.mBytesPerPacket = %d\n", streamFormat.mBytesPerPacket); TRACE(" streamFormat.mBytesPerFrame = %d\n", streamFormat.mBytesPerFrame); TRACE(" streamFormat.mSampleRate = %5.0f\n", streamFormat.mSampleRate); #endif /* set default output unit's input side to match output side */ err = AudioUnitSetProperty(self->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &streamFormat, size); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); return ALC_FALSE; } if(device->Frequency != streamFormat.mSampleRate) { device->NumUpdates = (ALuint)((ALuint64)device->NumUpdates * streamFormat.mSampleRate / device->Frequency); device->Frequency = streamFormat.mSampleRate; } /* FIXME: How to tell what channels are what in the output device, and how * to specify what we're giving? eg, 6.0 vs 5.1 */ switch(streamFormat.mChannelsPerFrame) { case 1: device->FmtChans = DevFmtMono; break; case 2: device->FmtChans = DevFmtStereo; break; case 4: device->FmtChans = DevFmtQuad; break; case 6: device->FmtChans = DevFmtX51; break; case 7: device->FmtChans = DevFmtX61; break; case 8: device->FmtChans = DevFmtX71; break; default: ERR("Unhandled channel count (%d), using Stereo\n", streamFormat.mChannelsPerFrame); device->FmtChans = DevFmtStereo; streamFormat.mChannelsPerFrame = 2; break; } SetDefaultWFXChannelOrder(device); /* use channel count and sample rate from the default output unit's current * parameters, but reset everything else */ streamFormat.mFramesPerPacket = 1; streamFormat.mFormatFlags = 0; switch(device->FmtType) { case DevFmtUByte: device->FmtType = DevFmtByte; /* fall-through */ case DevFmtByte: streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger; streamFormat.mBitsPerChannel = 8; break; case DevFmtUShort: device->FmtType = DevFmtShort; /* fall-through */ case DevFmtShort: streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger; streamFormat.mBitsPerChannel = 16; break; case DevFmtUInt: device->FmtType = DevFmtInt; /* fall-through */ case DevFmtInt: streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger; streamFormat.mBitsPerChannel = 32; break; case DevFmtFloat: streamFormat.mFormatFlags = kLinearPCMFormatFlagIsFloat; streamFormat.mBitsPerChannel = 32; break; } streamFormat.mBytesPerFrame = streamFormat.mChannelsPerFrame * streamFormat.mBitsPerChannel / 8; streamFormat.mBytesPerPacket = streamFormat.mBytesPerFrame; streamFormat.mFormatID = kAudioFormatLinearPCM; streamFormat.mFormatFlags |= kAudioFormatFlagsNativeEndian | kLinearPCMFormatFlagIsPacked; err = AudioUnitSetProperty(self->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &streamFormat, sizeof(AudioStreamBasicDescription)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); return ALC_FALSE; } /* setup callback */ self->frameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->AmbiOrder); input.inputProc = ALCcoreAudioPlayback_MixerProc; input.inputProcRefCon = self; err = AudioUnitSetProperty(self->audioUnit, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input, 0, &input, sizeof(AURenderCallbackStruct)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); return ALC_FALSE; } /* init the default audio unit... */ err = AudioUnitInitialize(self->audioUnit); if(err != noErr) { ERR("AudioUnitInitialize failed\n"); return ALC_FALSE; } return ALC_TRUE; } static ALCboolean ALCcoreAudioPlayback_start(ALCcoreAudioPlayback *self) { OSStatus err = AudioOutputUnitStart(self->audioUnit); if(err != noErr) { ERR("AudioOutputUnitStart failed\n"); return ALC_FALSE; } return ALC_TRUE; } static void ALCcoreAudioPlayback_stop(ALCcoreAudioPlayback *self) { OSStatus err = AudioOutputUnitStop(self->audioUnit); if(err != noErr) ERR("AudioOutputUnitStop failed\n"); } typedef struct ALCcoreAudioCapture { DERIVE_FROM_TYPE(ALCbackend); AudioUnit audioUnit; ALuint frameSize; ALdouble sampleRateRatio; // Ratio of hardware sample rate / requested sample rate AudioStreamBasicDescription format; // This is the OpenAL format as a CoreAudio ASBD AudioConverterRef audioConverter; // Sample rate converter if needed AudioBufferList *bufferList; // Buffer for data coming from the input device ALCvoid *resampleBuffer; // Buffer for returned RingBuffer data when resampling ll_ringbuffer_t *ring; } ALCcoreAudioCapture; static void ALCcoreAudioCapture_Construct(ALCcoreAudioCapture *self, ALCdevice *device); static void ALCcoreAudioCapture_Destruct(ALCcoreAudioCapture *self); static ALCenum ALCcoreAudioCapture_open(ALCcoreAudioCapture *self, const ALCchar *name); static DECLARE_FORWARD(ALCcoreAudioCapture, ALCbackend, ALCboolean, reset) static ALCboolean ALCcoreAudioCapture_start(ALCcoreAudioCapture *self); static void ALCcoreAudioCapture_stop(ALCcoreAudioCapture *self); static ALCenum ALCcoreAudioCapture_captureSamples(ALCcoreAudioCapture *self, ALCvoid *buffer, ALCuint samples); static ALCuint ALCcoreAudioCapture_availableSamples(ALCcoreAudioCapture *self); static DECLARE_FORWARD(ALCcoreAudioCapture, ALCbackend, ClockLatency, getClockLatency) static DECLARE_FORWARD(ALCcoreAudioCapture, ALCbackend, void, lock) static DECLARE_FORWARD(ALCcoreAudioCapture, ALCbackend, void, unlock) DECLARE_DEFAULT_ALLOCATORS(ALCcoreAudioCapture) DEFINE_ALCBACKEND_VTABLE(ALCcoreAudioCapture); static AudioBufferList *allocate_buffer_list(UInt32 channelCount, UInt32 byteSize) { AudioBufferList *list; list = calloc(1, FAM_SIZE(AudioBufferList, mBuffers, 1) + byteSize); if(list) { list->mNumberBuffers = 1; list->mBuffers[0].mNumberChannels = channelCount; list->mBuffers[0].mDataByteSize = byteSize; list->mBuffers[0].mData = &list->mBuffers[1]; } return list; } static void destroy_buffer_list(AudioBufferList *list) { free(list); } static void ALCcoreAudioCapture_Construct(ALCcoreAudioCapture *self, ALCdevice *device) { ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(ALCcoreAudioCapture, ALCbackend, self); self->audioUnit = 0; self->audioConverter = NULL; self->bufferList = NULL; self->resampleBuffer = NULL; self->ring = NULL; } static void ALCcoreAudioCapture_Destruct(ALCcoreAudioCapture *self) { ll_ringbuffer_free(self->ring); self->ring = NULL; free(self->resampleBuffer); self->resampleBuffer = NULL; destroy_buffer_list(self->bufferList); self->bufferList = NULL; if(self->audioConverter) AudioConverterDispose(self->audioConverter); self->audioConverter = NULL; if(self->audioUnit) AudioComponentInstanceDispose(self->audioUnit); self->audioUnit = 0; ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); } static OSStatus ALCcoreAudioCapture_RecordProc(void *inRefCon, AudioUnitRenderActionFlags* UNUSED(ioActionFlags), const AudioTimeStamp *inTimeStamp, UInt32 UNUSED(inBusNumber), UInt32 inNumberFrames, AudioBufferList* UNUSED(ioData)) { ALCcoreAudioCapture *self = inRefCon; AudioUnitRenderActionFlags flags = 0; OSStatus err; // fill the bufferList with data from the input device err = AudioUnitRender(self->audioUnit, &flags, inTimeStamp, 1, inNumberFrames, self->bufferList); if(err != noErr) { ERR("AudioUnitRender error: %d\n", err); return err; } ll_ringbuffer_write(self->ring, self->bufferList->mBuffers[0].mData, inNumberFrames); return noErr; } static OSStatus ALCcoreAudioCapture_ConvertCallback(AudioConverterRef UNUSED(inAudioConverter), UInt32 *ioNumberDataPackets, AudioBufferList *ioData, AudioStreamPacketDescription** UNUSED(outDataPacketDescription), void *inUserData) { ALCcoreAudioCapture *self = inUserData; // Read from the ring buffer and store temporarily in a large buffer ll_ringbuffer_read(self->ring, self->resampleBuffer, *ioNumberDataPackets); // Set the input data ioData->mNumberBuffers = 1; ioData->mBuffers[0].mNumberChannels = self->format.mChannelsPerFrame; ioData->mBuffers[0].mData = self->resampleBuffer; ioData->mBuffers[0].mDataByteSize = (*ioNumberDataPackets) * self->format.mBytesPerFrame; return noErr; } static ALCenum ALCcoreAudioCapture_open(ALCcoreAudioCapture *self, const ALCchar *name) { ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice; AudioStreamBasicDescription requestedFormat; // The application requested format AudioStreamBasicDescription hardwareFormat; // The hardware format AudioStreamBasicDescription outputFormat; // The AudioUnit output format AURenderCallbackStruct input; AudioComponentDescription desc; UInt32 outputFrameCount; UInt32 propertySize; AudioObjectPropertyAddress propertyAddress; UInt32 enableIO; AudioComponent comp; OSStatus err; if(!name) name = ca_device; else if(strcmp(name, ca_device) != 0) return ALC_INVALID_VALUE; desc.componentType = kAudioUnitType_Output; #if TARGET_OS_IOS desc.componentSubType = kAudioUnitSubType_RemoteIO; #else desc.componentSubType = kAudioUnitSubType_HALOutput; #endif desc.componentManufacturer = kAudioUnitManufacturer_Apple; desc.componentFlags = 0; desc.componentFlagsMask = 0; // Search for component with given description comp = AudioComponentFindNext(NULL, &desc); if(comp == NULL) { ERR("AudioComponentFindNext failed\n"); return ALC_INVALID_VALUE; } // Open the component err = AudioComponentInstanceNew(comp, &self->audioUnit); if(err != noErr) { ERR("AudioComponentInstanceNew failed\n"); goto error; } // Turn off AudioUnit output enableIO = 0; err = AudioUnitSetProperty(self->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Output, 0, &enableIO, sizeof(ALuint)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } // Turn on AudioUnit input enableIO = 1; err = AudioUnitSetProperty(self->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input, 1, &enableIO, sizeof(ALuint)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } #if !TARGET_OS_IOS // Get the default input device AudioDeviceID inputDevice = kAudioDeviceUnknown; propertySize = sizeof(AudioDeviceID); propertyAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice; propertyAddress.mScope = kAudioObjectPropertyScopeGlobal; propertyAddress.mElement = kAudioObjectPropertyElementMaster; err = AudioObjectGetPropertyData(kAudioObjectSystemObject, &propertyAddress, 0, NULL, &propertySize, &inputDevice); if(err != noErr) { ERR("AudioObjectGetPropertyData failed\n"); goto error; } if(inputDevice == kAudioDeviceUnknown) { ERR("No input device found\n"); goto error; } // Track the input device err = AudioUnitSetProperty(self->audioUnit, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, 0, &inputDevice, sizeof(AudioDeviceID)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } #endif // set capture callback input.inputProc = ALCcoreAudioCapture_RecordProc; input.inputProcRefCon = self; err = AudioUnitSetProperty(self->audioUnit, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, 0, &input, sizeof(AURenderCallbackStruct)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } // Initialize the device err = AudioUnitInitialize(self->audioUnit); if(err != noErr) { ERR("AudioUnitInitialize failed\n"); goto error; } // Get the hardware format propertySize = sizeof(AudioStreamBasicDescription); err = AudioUnitGetProperty(self->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 1, &hardwareFormat, &propertySize); if(err != noErr || propertySize != sizeof(AudioStreamBasicDescription)) { ERR("AudioUnitGetProperty failed\n"); goto error; } // Set up the requested format description switch(device->FmtType) { case DevFmtUByte: requestedFormat.mBitsPerChannel = 8; requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked; break; case DevFmtShort: requestedFormat.mBitsPerChannel = 16; requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked; break; case DevFmtInt: requestedFormat.mBitsPerChannel = 32; requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked; break; case DevFmtFloat: requestedFormat.mBitsPerChannel = 32; requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked; break; case DevFmtByte: case DevFmtUShort: case DevFmtUInt: ERR("%s samples not supported\n", DevFmtTypeString(device->FmtType)); goto error; } switch(device->FmtChans) { case DevFmtMono: requestedFormat.mChannelsPerFrame = 1; break; case DevFmtStereo: requestedFormat.mChannelsPerFrame = 2; break; case DevFmtQuad: case DevFmtX51: case DevFmtX51Rear: case DevFmtX61: case DevFmtX71: case DevFmtAmbi3D: ERR("%s not supported\n", DevFmtChannelsString(device->FmtChans)); goto error; } requestedFormat.mBytesPerFrame = requestedFormat.mChannelsPerFrame * requestedFormat.mBitsPerChannel / 8; requestedFormat.mBytesPerPacket = requestedFormat.mBytesPerFrame; requestedFormat.mSampleRate = device->Frequency; requestedFormat.mFormatID = kAudioFormatLinearPCM; requestedFormat.mReserved = 0; requestedFormat.mFramesPerPacket = 1; // save requested format description for later use self->format = requestedFormat; self->frameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->AmbiOrder); // Use intermediate format for sample rate conversion (outputFormat) // Set sample rate to the same as hardware for resampling later outputFormat = requestedFormat; outputFormat.mSampleRate = hardwareFormat.mSampleRate; // Determine sample rate ratio for resampling self->sampleRateRatio = outputFormat.mSampleRate / device->Frequency; // The output format should be the requested format, but using the hardware sample rate // This is because the AudioUnit will automatically scale other properties, except for sample rate err = AudioUnitSetProperty(self->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 1, (void *)&outputFormat, sizeof(outputFormat)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } // Set the AudioUnit output format frame count outputFrameCount = device->UpdateSize * self->sampleRateRatio; err = AudioUnitSetProperty(self->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Output, 0, &outputFrameCount, sizeof(outputFrameCount)); if(err != noErr) { ERR("AudioUnitSetProperty failed: %d\n", err); goto error; } // Set up sample converter err = AudioConverterNew(&outputFormat, &requestedFormat, &self->audioConverter); if(err != noErr) { ERR("AudioConverterNew failed: %d\n", err); goto error; } // Create a buffer for use in the resample callback self->resampleBuffer = malloc(device->UpdateSize * self->frameSize * self->sampleRateRatio); // Allocate buffer for the AudioUnit output self->bufferList = allocate_buffer_list(outputFormat.mChannelsPerFrame, device->UpdateSize * self->frameSize * self->sampleRateRatio); if(self->bufferList == NULL) goto error; self->ring = ll_ringbuffer_create( (size_t)ceil(device->UpdateSize*self->sampleRateRatio*device->NumUpdates), self->frameSize, false ); if(!self->ring) goto error; alstr_copy_cstr(&device->DeviceName, name); return ALC_NO_ERROR; error: ll_ringbuffer_free(self->ring); self->ring = NULL; free(self->resampleBuffer); self->resampleBuffer = NULL; destroy_buffer_list(self->bufferList); self->bufferList = NULL; if(self->audioConverter) AudioConverterDispose(self->audioConverter); self->audioConverter = NULL; if(self->audioUnit) AudioComponentInstanceDispose(self->audioUnit); self->audioUnit = 0; return ALC_INVALID_VALUE; } static ALCboolean ALCcoreAudioCapture_start(ALCcoreAudioCapture *self) { OSStatus err = AudioOutputUnitStart(self->audioUnit); if(err != noErr) { ERR("AudioOutputUnitStart failed\n"); return ALC_FALSE; } return ALC_TRUE; } static void ALCcoreAudioCapture_stop(ALCcoreAudioCapture *self) { OSStatus err = AudioOutputUnitStop(self->audioUnit); if(err != noErr) ERR("AudioOutputUnitStop failed\n"); } static ALCenum ALCcoreAudioCapture_captureSamples(ALCcoreAudioCapture *self, ALCvoid *buffer, ALCuint samples) { union { ALbyte _[sizeof(AudioBufferList) + sizeof(AudioBuffer)]; AudioBufferList list; } audiobuf = { { 0 } }; UInt32 frameCount; OSStatus err; // If no samples are requested, just return if(samples == 0) return ALC_NO_ERROR; // Point the resampling buffer to the capture buffer audiobuf.list.mNumberBuffers = 1; audiobuf.list.mBuffers[0].mNumberChannels = self->format.mChannelsPerFrame; audiobuf.list.mBuffers[0].mDataByteSize = samples * self->frameSize; audiobuf.list.mBuffers[0].mData = buffer; // Resample into another AudioBufferList frameCount = samples; err = AudioConverterFillComplexBuffer(self->audioConverter, ALCcoreAudioCapture_ConvertCallback, self, &frameCount, &audiobuf.list, NULL ); if(err != noErr) { ERR("AudioConverterFillComplexBuffer error: %d\n", err); return ALC_INVALID_VALUE; } return ALC_NO_ERROR; } static ALCuint ALCcoreAudioCapture_availableSamples(ALCcoreAudioCapture *self) { return ll_ringbuffer_read_space(self->ring) / self->sampleRateRatio; } typedef struct ALCcoreAudioBackendFactory { DERIVE_FROM_TYPE(ALCbackendFactory); } ALCcoreAudioBackendFactory; #define ALCCOREAUDIOBACKENDFACTORY_INITIALIZER { { GET_VTABLE2(ALCcoreAudioBackendFactory, ALCbackendFactory) } } ALCbackendFactory *ALCcoreAudioBackendFactory_getFactory(void); static ALCboolean ALCcoreAudioBackendFactory_init(ALCcoreAudioBackendFactory *self); static DECLARE_FORWARD(ALCcoreAudioBackendFactory, ALCbackendFactory, void, deinit) static ALCboolean ALCcoreAudioBackendFactory_querySupport(ALCcoreAudioBackendFactory *self, ALCbackend_Type type); static void ALCcoreAudioBackendFactory_probe(ALCcoreAudioBackendFactory *self, enum DevProbe type, al_string *outnames); static ALCbackend* ALCcoreAudioBackendFactory_createBackend(ALCcoreAudioBackendFactory *self, ALCdevice *device, ALCbackend_Type type); DEFINE_ALCBACKENDFACTORY_VTABLE(ALCcoreAudioBackendFactory); ALCbackendFactory *ALCcoreAudioBackendFactory_getFactory(void) { static ALCcoreAudioBackendFactory factory = ALCCOREAUDIOBACKENDFACTORY_INITIALIZER; return STATIC_CAST(ALCbackendFactory, &factory); } static ALCboolean ALCcoreAudioBackendFactory_init(ALCcoreAudioBackendFactory* UNUSED(self)) { return ALC_TRUE; } static ALCboolean ALCcoreAudioBackendFactory_querySupport(ALCcoreAudioBackendFactory* UNUSED(self), ALCbackend_Type type) { if(type == ALCbackend_Playback || ALCbackend_Capture) return ALC_TRUE; return ALC_FALSE; } static void ALCcoreAudioBackendFactory_probe(ALCcoreAudioBackendFactory* UNUSED(self), enum DevProbe type, al_string *outnames) { switch(type) { case ALL_DEVICE_PROBE: case CAPTURE_DEVICE_PROBE: alstr_append_range(outnames, ca_device, ca_device+sizeof(ca_device)); break; } } static ALCbackend* ALCcoreAudioBackendFactory_createBackend(ALCcoreAudioBackendFactory* UNUSED(self), ALCdevice *device, ALCbackend_Type type) { if(type == ALCbackend_Playback) { ALCcoreAudioPlayback *backend; NEW_OBJ(backend, ALCcoreAudioPlayback)(device); if(!backend) return NULL; return STATIC_CAST(ALCbackend, backend); } if(type == ALCbackend_Capture) { ALCcoreAudioCapture *backend; NEW_OBJ(backend, ALCcoreAudioCapture)(device); if(!backend) return NULL; return STATIC_CAST(ALCbackend, backend); } return NULL; }