/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is an OpenAL backend for Android using the native audio APIs based on * OpenSL ES 1.0.1. It is based on source code for the native-audio sample app * bundled with NDK. */ #include "config.h" #include #include #include "alMain.h" #include "alu.h" #include "ringbuffer.h" #include "threads.h" #include "compat.h" #include "backends/base.h" #include #include #include /* Helper macros */ #define VCALL(obj, func) ((*(obj))->func((obj), EXTRACT_VCALL_ARGS #define VCALL0(obj, func) ((*(obj))->func((obj) EXTRACT_VCALL_ARGS static const ALCchar opensl_device[] = "OpenSL"; static SLuint32 GetChannelMask(enum DevFmtChannels chans) { switch(chans) { case DevFmtMono: return SL_SPEAKER_FRONT_CENTER; case DevFmtStereo: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT; case DevFmtQuad: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT| SL_SPEAKER_BACK_LEFT|SL_SPEAKER_BACK_RIGHT; case DevFmtX51: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT| SL_SPEAKER_FRONT_CENTER|SL_SPEAKER_LOW_FREQUENCY| SL_SPEAKER_SIDE_LEFT|SL_SPEAKER_SIDE_RIGHT; case DevFmtX51Rear: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT| SL_SPEAKER_FRONT_CENTER|SL_SPEAKER_LOW_FREQUENCY| SL_SPEAKER_BACK_LEFT|SL_SPEAKER_BACK_RIGHT; case DevFmtX61: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT| SL_SPEAKER_FRONT_CENTER|SL_SPEAKER_LOW_FREQUENCY| SL_SPEAKER_BACK_CENTER| SL_SPEAKER_SIDE_LEFT|SL_SPEAKER_SIDE_RIGHT; case DevFmtX71: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT| SL_SPEAKER_FRONT_CENTER|SL_SPEAKER_LOW_FREQUENCY| SL_SPEAKER_BACK_LEFT|SL_SPEAKER_BACK_RIGHT| SL_SPEAKER_SIDE_LEFT|SL_SPEAKER_SIDE_RIGHT; case DevFmtAmbi3D: break; } return 0; } #ifdef SL_DATAFORMAT_PCM_EX static SLuint32 GetTypeRepresentation(enum DevFmtType type) { switch(type) { case DevFmtUByte: case DevFmtUShort: case DevFmtUInt: return SL_PCM_REPRESENTATION_UNSIGNED_INT; case DevFmtByte: case DevFmtShort: case DevFmtInt: return SL_PCM_REPRESENTATION_SIGNED_INT; case DevFmtFloat: return SL_PCM_REPRESENTATION_FLOAT; } return 0; } #endif static const char *res_str(SLresult result) { switch(result) { case SL_RESULT_SUCCESS: return "Success"; case SL_RESULT_PRECONDITIONS_VIOLATED: return "Preconditions violated"; case SL_RESULT_PARAMETER_INVALID: return "Parameter invalid"; case SL_RESULT_MEMORY_FAILURE: return "Memory failure"; case SL_RESULT_RESOURCE_ERROR: return "Resource error"; case SL_RESULT_RESOURCE_LOST: return "Resource lost"; case SL_RESULT_IO_ERROR: return "I/O error"; case SL_RESULT_BUFFER_INSUFFICIENT: return "Buffer insufficient"; case SL_RESULT_CONTENT_CORRUPTED: return "Content corrupted"; case SL_RESULT_CONTENT_UNSUPPORTED: return "Content unsupported"; case SL_RESULT_CONTENT_NOT_FOUND: return "Content not found"; case SL_RESULT_PERMISSION_DENIED: return "Permission denied"; case SL_RESULT_FEATURE_UNSUPPORTED: return "Feature unsupported"; case SL_RESULT_INTERNAL_ERROR: return "Internal error"; case SL_RESULT_UNKNOWN_ERROR: return "Unknown error"; case SL_RESULT_OPERATION_ABORTED: return "Operation aborted"; case SL_RESULT_CONTROL_LOST: return "Control lost"; #ifdef SL_RESULT_READONLY case SL_RESULT_READONLY: return "ReadOnly"; #endif #ifdef SL_RESULT_ENGINEOPTION_UNSUPPORTED case SL_RESULT_ENGINEOPTION_UNSUPPORTED: return "Engine option unsupported"; #endif #ifdef SL_RESULT_SOURCE_SINK_INCOMPATIBLE case SL_RESULT_SOURCE_SINK_INCOMPATIBLE: return "Source/Sink incompatible"; #endif } return "Unknown error code"; } #define PRINTERR(x, s) do { \ if((x) != SL_RESULT_SUCCESS) \ ERR("%s: %s\n", (s), res_str((x))); \ } while(0) typedef struct ALCopenslPlayback { DERIVE_FROM_TYPE(ALCbackend); /* engine interfaces */ SLObjectItf mEngineObj; SLEngineItf mEngine; /* output mix interfaces */ SLObjectItf mOutputMix; /* buffer queue player interfaces */ SLObjectItf mBufferQueueObj; ll_ringbuffer_t *mRing; alcnd_t mCond; ALsizei mFrameSize; ATOMIC(ALenum) mKillNow; althrd_t mThread; } ALCopenslPlayback; static void ALCopenslPlayback_process(SLAndroidSimpleBufferQueueItf bq, void *context); static int ALCopenslPlayback_mixerProc(void *arg); static void ALCopenslPlayback_Construct(ALCopenslPlayback *self, ALCdevice *device); static void ALCopenslPlayback_Destruct(ALCopenslPlayback *self); static ALCenum ALCopenslPlayback_open(ALCopenslPlayback *self, const ALCchar *name); static void ALCopenslPlayback_close(ALCopenslPlayback *self); static ALCboolean ALCopenslPlayback_reset(ALCopenslPlayback *self); static ALCboolean ALCopenslPlayback_start(ALCopenslPlayback *self); static void ALCopenslPlayback_stop(ALCopenslPlayback *self); static DECLARE_FORWARD2(ALCopenslPlayback, ALCbackend, ALCenum, captureSamples, void*, ALCuint) static DECLARE_FORWARD(ALCopenslPlayback, ALCbackend, ALCuint, availableSamples) static ClockLatency ALCopenslPlayback_getClockLatency(ALCopenslPlayback *self); static DECLARE_FORWARD(ALCopenslPlayback, ALCbackend, void, lock) static DECLARE_FORWARD(ALCopenslPlayback, ALCbackend, void, unlock) DECLARE_DEFAULT_ALLOCATORS(ALCopenslPlayback) DEFINE_ALCBACKEND_VTABLE(ALCopenslPlayback); static void ALCopenslPlayback_Construct(ALCopenslPlayback *self, ALCdevice *device) { ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(ALCopenslPlayback, ALCbackend, self); self->mEngineObj = NULL; self->mEngine = NULL; self->mOutputMix = NULL; self->mBufferQueueObj = NULL; self->mRing = NULL; alcnd_init(&self->mCond); self->mFrameSize = 0; ATOMIC_INIT(&self->mKillNow, AL_FALSE); } static void ALCopenslPlayback_Destruct(ALCopenslPlayback* self) { if(self->mBufferQueueObj != NULL) VCALL0(self->mBufferQueueObj,Destroy)(); self->mBufferQueueObj = NULL; if(self->mOutputMix != NULL) VCALL0(self->mOutputMix,Destroy)(); self->mOutputMix = NULL; if(self->mEngineObj != NULL) VCALL0(self->mEngineObj,Destroy)(); self->mEngineObj = NULL; self->mEngine = NULL; ll_ringbuffer_free(self->mRing); self->mRing = NULL; alcnd_destroy(&self->mCond); ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); } /* this callback handler is called every time a buffer finishes playing */ static void ALCopenslPlayback_process(SLAndroidSimpleBufferQueueItf UNUSED(bq), void *context) { ALCopenslPlayback *self = context; /* A note on the ringbuffer usage: The buffer queue seems to hold on to the * pointer passed to the Enqueue method, rather than copying the audio. * Consequently, the ringbuffer contains the audio that is currently queued * and waiting to play. This process() callback is called when a buffer is * finished, so we simply move the read pointer up to indicate the space is * available for writing again, and wake up the mixer thread to mix and * queue more audio. */ ll_ringbuffer_read_advance(self->mRing, 1); alcnd_signal(&self->mCond); } static int ALCopenslPlayback_mixerProc(void *arg) { ALCopenslPlayback *self = arg; ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice; SLAndroidSimpleBufferQueueItf bufferQueue; ll_ringbuffer_data_t data[2]; SLPlayItf player; SLresult result; size_t padding; SetRTPriority(); althrd_setname(althrd_current(), MIXER_THREAD_NAME); result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue); PRINTERR(result, "bufferQueue->GetInterface SL_IID_ANDROIDSIMPLEBUFFERQUEUE"); if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_PLAY, &player); PRINTERR(result, "bufferQueue->GetInterface SL_IID_PLAY"); } if(SL_RESULT_SUCCESS != result) { ALCopenslPlayback_lock(self); aluHandleDisconnect(device); ALCopenslPlayback_unlock(self); return 1; } /* NOTE: The ringbuffer will be larger than the desired buffer metrics. * Calculate the amount of extra space so we know how much to keep unused. */ padding = ll_ringbuffer_write_space(self->mRing) - device->NumUpdates; ALCopenslPlayback_lock(self); while(ATOMIC_LOAD_SEQ(&self->mKillNow) == AL_FALSE && device->Connected) { size_t todo, len0, len1; if(ll_ringbuffer_write_space(self->mRing) <= padding) { SLuint32 state = 0; result = VCALL(player,GetPlayState)(&state); PRINTERR(result, "player->GetPlayState"); if(SL_RESULT_SUCCESS == result && state != SL_PLAYSTATE_PLAYING) { result = VCALL(player,SetPlayState)(SL_PLAYSTATE_PLAYING); PRINTERR(result, "player->SetPlayState"); } if(SL_RESULT_SUCCESS != result) { aluHandleDisconnect(device); break; } /* NOTE: Unfortunately, there is an unavoidable race condition * here. It's possible for the process() method to run, updating * the read pointer and signaling the condition variable, in * between checking the write size and waiting for the condition * variable here. This will cause alcnd_wait to wait until the * *next* process() invocation signals the condition variable * again. * * However, this should only happen if the mixer is running behind * anyway (as ideally we'll be asleep in alcnd_wait by the time the * process() method is invoked), so this behavior is not completely * unwarranted. It's unfortunate since it'll be wasting time * sleeping that could be used to catch up, but there's no way * around it without blocking in the process() method. */ if(ll_ringbuffer_write_space(self->mRing) <= padding) { alcnd_wait(&self->mCond, &STATIC_CAST(ALCbackend,self)->mMutex); continue; } } ll_ringbuffer_get_write_vector(self->mRing, data); todo = data[0].len+data[1].len - padding; len0 = minu(todo, data[0].len); len1 = minu(todo-len0, data[1].len); aluMixData(device, data[0].buf, len0*device->UpdateSize); for(size_t i = 0;i < len0;i++) { result = VCALL(bufferQueue,Enqueue)(data[0].buf, device->UpdateSize*self->mFrameSize); PRINTERR(result, "bufferQueue->Enqueue"); if(SL_RESULT_SUCCESS == result) ll_ringbuffer_write_advance(self->mRing, 1); data[0].buf += device->UpdateSize*self->mFrameSize; } if(len1 > 0) { aluMixData(device, data[1].buf, len1*device->UpdateSize); for(size_t i = 0;i < len1;i++) { result = VCALL(bufferQueue,Enqueue)(data[1].buf, device->UpdateSize*self->mFrameSize); PRINTERR(result, "bufferQueue->Enqueue"); if(SL_RESULT_SUCCESS == result) ll_ringbuffer_write_advance(self->mRing, 1); data[1].buf += device->UpdateSize*self->mFrameSize; } } } ALCopenslPlayback_unlock(self); return 0; } static ALCenum ALCopenslPlayback_open(ALCopenslPlayback *self, const ALCchar *name) { ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice; SLresult result; if(!name) name = opensl_device; else if(strcmp(name, opensl_device) != 0) return ALC_INVALID_VALUE; // create engine result = slCreateEngine(&self->mEngineObj, 0, NULL, 0, NULL, NULL); PRINTERR(result, "slCreateEngine"); if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mEngineObj,Realize)(SL_BOOLEAN_FALSE); PRINTERR(result, "engine->Realize"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mEngineObj,GetInterface)(SL_IID_ENGINE, &self->mEngine); PRINTERR(result, "engine->GetInterface"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mEngine,CreateOutputMix)(&self->mOutputMix, 0, NULL, NULL); PRINTERR(result, "engine->CreateOutputMix"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mOutputMix,Realize)(SL_BOOLEAN_FALSE); PRINTERR(result, "outputMix->Realize"); } if(SL_RESULT_SUCCESS != result) { if(self->mOutputMix != NULL) VCALL0(self->mOutputMix,Destroy)(); self->mOutputMix = NULL; if(self->mEngineObj != NULL) VCALL0(self->mEngineObj,Destroy)(); self->mEngineObj = NULL; self->mEngine = NULL; return ALC_INVALID_VALUE; } alstr_copy_cstr(&device->DeviceName, name); return ALC_NO_ERROR; } static void ALCopenslPlayback_close(ALCopenslPlayback *self) { if(self->mBufferQueueObj != NULL) VCALL0(self->mBufferQueueObj,Destroy)(); self->mBufferQueueObj = NULL; VCALL0(self->mOutputMix,Destroy)(); self->mOutputMix = NULL; VCALL0(self->mEngineObj,Destroy)(); self->mEngineObj = NULL; self->mEngine = NULL; } static ALCboolean ALCopenslPlayback_reset(ALCopenslPlayback *self) { ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice; SLDataLocator_AndroidSimpleBufferQueue loc_bufq; SLDataLocator_OutputMix loc_outmix; SLDataSource audioSrc; SLDataSink audioSnk; ALuint sampleRate; SLInterfaceID ids[2]; SLboolean reqs[2]; SLresult result; JNIEnv *env; if(self->mBufferQueueObj != NULL) VCALL0(self->mBufferQueueObj,Destroy)(); self->mBufferQueueObj = NULL; sampleRate = device->Frequency; if(!(device->Flags&DEVICE_FREQUENCY_REQUEST) && (env=Android_GetJNIEnv()) != NULL) { /* FIXME: Disabled until I figure out how to get the Context needed for * the getSystemService call. */ #if 0 /* Get necessary stuff for using java.lang.Integer, * android.content.Context, and android.media.AudioManager. */ jclass int_cls = JCALL(env,FindClass)("java/lang/Integer"); jmethodID int_parseint = JCALL(env,GetStaticMethodID)(int_cls, "parseInt", "(Ljava/lang/String;)I" ); TRACE("Integer: %p, parseInt: %p\n", int_cls, int_parseint); jclass ctx_cls = JCALL(env,FindClass)("android/content/Context"); jfieldID ctx_audsvc = JCALL(env,GetStaticFieldID)(ctx_cls, "AUDIO_SERVICE", "Ljava/lang/String;" ); jmethodID ctx_getSysSvc = JCALL(env,GetMethodID)(ctx_cls, "getSystemService", "(Ljava/lang/String;)Ljava/lang/Object;" ); TRACE("Context: %p, AUDIO_SERVICE: %p, getSystemService: %p\n", ctx_cls, ctx_audsvc, ctx_getSysSvc); jclass audmgr_cls = JCALL(env,FindClass)("android/media/AudioManager"); jfieldID audmgr_prop_out_srate = JCALL(env,GetStaticFieldID)(audmgr_cls, "PROPERTY_OUTPUT_SAMPLE_RATE", "Ljava/lang/String;" ); jmethodID audmgr_getproperty = JCALL(env,GetMethodID)(audmgr_cls, "getProperty", "(Ljava/lang/String;)Ljava/lang/String;" ); TRACE("AudioManager: %p, PROPERTY_OUTPUT_SAMPLE_RATE: %p, getProperty: %p\n", audmgr_cls, audmgr_prop_out_srate, audmgr_getproperty); const char *strchars; jstring strobj; /* Now make the calls. */ //AudioManager audMgr = (AudioManager)getSystemService(Context.AUDIO_SERVICE); strobj = JCALL(env,GetStaticObjectField)(ctx_cls, ctx_audsvc); jobject audMgr = JCALL(env,CallObjectMethod)(ctx_cls, ctx_getSysSvc, strobj); strchars = JCALL(env,GetStringUTFChars)(strobj, NULL); TRACE("Context.getSystemService(%s) = %p\n", strchars, audMgr); JCALL(env,ReleaseStringUTFChars)(strobj, strchars); //String srateStr = audMgr.getProperty(AudioManager.PROPERTY_OUTPUT_SAMPLE_RATE); strobj = JCALL(env,GetStaticObjectField)(audmgr_cls, audmgr_prop_out_srate); jstring srateStr = JCALL(env,CallObjectMethod)(audMgr, audmgr_getproperty, strobj); strchars = JCALL(env,GetStringUTFChars)(strobj, NULL); TRACE("audMgr.getProperty(%s) = %p\n", strchars, srateStr); JCALL(env,ReleaseStringUTFChars)(strobj, strchars); //int sampleRate = Integer.parseInt(srateStr); sampleRate = JCALL(env,CallStaticIntMethod)(int_cls, int_parseint, srateStr); strchars = JCALL(env,GetStringUTFChars)(srateStr, NULL); TRACE("Got system sample rate %uhz (%s)\n", sampleRate, strchars); JCALL(env,ReleaseStringUTFChars)(srateStr, strchars); if(!sampleRate) sampleRate = device->Frequency; else sampleRate = maxu(sampleRate, MIN_OUTPUT_RATE); #endif } if(sampleRate != device->Frequency) { device->NumUpdates = (device->NumUpdates*sampleRate + (device->Frequency>>1)) / device->Frequency; device->NumUpdates = maxu(device->NumUpdates, 2); device->Frequency = sampleRate; } device->FmtChans = DevFmtStereo; device->FmtType = DevFmtShort; SetDefaultWFXChannelOrder(device); self->mFrameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->AmbiOrder); loc_bufq.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE; loc_bufq.numBuffers = device->NumUpdates; #ifdef SL_DATAFORMAT_PCM_EX SLDataFormat_PCM_EX format_pcm; format_pcm.formatType = SL_DATAFORMAT_PCM_EX; format_pcm.numChannels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder); format_pcm.sampleRate = device->Frequency * 1000; format_pcm.bitsPerSample = BytesFromDevFmt(device->FmtType) * 8; format_pcm.containerSize = format_pcm.bitsPerSample; format_pcm.channelMask = GetChannelMask(device->FmtChans); format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN : SL_BYTEORDER_BIGENDIAN; format_pcm.representation = GetTypeRepresentation(device->FmtType); #else SLDataFormat_PCM format_pcm; format_pcm.formatType = SL_DATAFORMAT_PCM; format_pcm.numChannels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder); format_pcm.samplesPerSec = device->Frequency * 1000; format_pcm.bitsPerSample = BytesFromDevFmt(device->FmtType) * 8; format_pcm.containerSize = format_pcm.bitsPerSample; format_pcm.channelMask = GetChannelMask(device->FmtChans); format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN : SL_BYTEORDER_BIGENDIAN; #endif audioSrc.pLocator = &loc_bufq; audioSrc.pFormat = &format_pcm; loc_outmix.locatorType = SL_DATALOCATOR_OUTPUTMIX; loc_outmix.outputMix = self->mOutputMix; audioSnk.pLocator = &loc_outmix; audioSnk.pFormat = NULL; ids[0] = SL_IID_ANDROIDSIMPLEBUFFERQUEUE; reqs[0] = SL_BOOLEAN_TRUE; ids[1] = SL_IID_ANDROIDCONFIGURATION; reqs[1] = SL_BOOLEAN_FALSE; result = VCALL(self->mEngine,CreateAudioPlayer)(&self->mBufferQueueObj, &audioSrc, &audioSnk, COUNTOF(ids), ids, reqs ); PRINTERR(result, "engine->CreateAudioPlayer"); if(SL_RESULT_SUCCESS == result) { /* Set the stream type to "media" (games, music, etc), if possible. */ SLAndroidConfigurationItf config; result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_ANDROIDCONFIGURATION, &config); PRINTERR(result, "bufferQueue->GetInterface SL_IID_ANDROIDCONFIGURATION"); if(SL_RESULT_SUCCESS == result) { SLint32 streamType = SL_ANDROID_STREAM_MEDIA; result = VCALL(config,SetConfiguration)(SL_ANDROID_KEY_STREAM_TYPE, &streamType, sizeof(streamType) ); PRINTERR(result, "config->SetConfiguration"); } /* Clear any error since this was optional. */ result = SL_RESULT_SUCCESS; } if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mBufferQueueObj,Realize)(SL_BOOLEAN_FALSE); PRINTERR(result, "bufferQueue->Realize"); } if(SL_RESULT_SUCCESS != result) { if(self->mBufferQueueObj != NULL) VCALL0(self->mBufferQueueObj,Destroy)(); self->mBufferQueueObj = NULL; return ALC_FALSE; } return ALC_TRUE; } static ALCboolean ALCopenslPlayback_start(ALCopenslPlayback *self) { ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice; SLAndroidSimpleBufferQueueItf bufferQueue; SLresult result; ll_ringbuffer_free(self->mRing); /* NOTE: Add an extra update since one period's worth of audio in the ring * buffer will always be left unfilled because one element of the ring * buffer will not be writeable, and we only write in period-sized chunks. */ self->mRing = ll_ringbuffer_create(device->NumUpdates + 1, self->mFrameSize*device->UpdateSize); result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue); PRINTERR(result, "bufferQueue->GetInterface"); if(SL_RESULT_SUCCESS != result) return ALC_FALSE; result = VCALL(bufferQueue,RegisterCallback)(ALCopenslPlayback_process, self); PRINTERR(result, "bufferQueue->RegisterCallback"); if(SL_RESULT_SUCCESS != result) return ALC_FALSE; ATOMIC_STORE_SEQ(&self->mKillNow, AL_FALSE); if(althrd_create(&self->mThread, ALCopenslPlayback_mixerProc, self) != althrd_success) { ERR("Failed to start mixer thread\n"); return ALC_FALSE; } return ALC_TRUE; } static void ALCopenslPlayback_stop(ALCopenslPlayback *self) { SLAndroidSimpleBufferQueueItf bufferQueue; SLPlayItf player; SLresult result; int res; if(ATOMIC_EXCHANGE_SEQ(&self->mKillNow, AL_TRUE)) return; /* Lock the backend to ensure we don't flag the mixer to die and signal the * mixer to wake up in between it checking the flag and going to sleep and * wait for a wakeup (potentially leading to it never waking back up to see * the flag). */ ALCopenslPlayback_lock(self); ALCopenslPlayback_unlock(self); alcnd_signal(&self->mCond); althrd_join(self->mThread, &res); result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_PLAY, &player); PRINTERR(result, "bufferQueue->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL(player,SetPlayState)(SL_PLAYSTATE_STOPPED); PRINTERR(result, "player->SetPlayState"); } result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue); PRINTERR(result, "bufferQueue->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL0(bufferQueue,Clear)(); PRINTERR(result, "bufferQueue->Clear"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(bufferQueue,RegisterCallback)(NULL, NULL); PRINTERR(result, "bufferQueue->RegisterCallback"); } if(SL_RESULT_SUCCESS == result) { SLAndroidSimpleBufferQueueState state; do { althrd_yield(); result = VCALL(bufferQueue,GetState)(&state); } while(SL_RESULT_SUCCESS == result && state.count > 0); PRINTERR(result, "bufferQueue->GetState"); } ll_ringbuffer_free(self->mRing); self->mRing = NULL; } static ClockLatency ALCopenslPlayback_getClockLatency(ALCopenslPlayback *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; ClockLatency ret; ALCopenslPlayback_lock(self); ret.ClockTime = GetDeviceClockTime(device); ret.Latency = ll_ringbuffer_read_space(self->mRing)*device->UpdateSize * DEVICE_CLOCK_RES / device->Frequency; ALCopenslPlayback_unlock(self); return ret; } typedef struct ALCopenslCapture { DERIVE_FROM_TYPE(ALCbackend); /* engine interfaces */ SLObjectItf mEngineObj; SLEngineItf mEngine; /* recording interfaces */ SLObjectItf mRecordObj; ll_ringbuffer_t *mRing; ALCuint mSplOffset; ALsizei mFrameSize; } ALCopenslCapture; static void ALCopenslCapture_process(SLAndroidSimpleBufferQueueItf bq, void *context); static void ALCopenslCapture_Construct(ALCopenslCapture *self, ALCdevice *device); static void ALCopenslCapture_Destruct(ALCopenslCapture *self); static ALCenum ALCopenslCapture_open(ALCopenslCapture *self, const ALCchar *name); static void ALCopenslCapture_close(ALCopenslCapture *self); static DECLARE_FORWARD(ALCopenslCapture, ALCbackend, ALCboolean, reset) static ALCboolean ALCopenslCapture_start(ALCopenslCapture *self); static void ALCopenslCapture_stop(ALCopenslCapture *self); static ALCenum ALCopenslCapture_captureSamples(ALCopenslCapture *self, ALCvoid *buffer, ALCuint samples); static ALCuint ALCopenslCapture_availableSamples(ALCopenslCapture *self); static DECLARE_FORWARD(ALCopenslCapture, ALCbackend, ClockLatency, getClockLatency) static DECLARE_FORWARD(ALCopenslCapture, ALCbackend, void, lock) static DECLARE_FORWARD(ALCopenslCapture, ALCbackend, void, unlock) DECLARE_DEFAULT_ALLOCATORS(ALCopenslCapture) DEFINE_ALCBACKEND_VTABLE(ALCopenslCapture); static void ALCopenslCapture_process(SLAndroidSimpleBufferQueueItf UNUSED(bq), void *context) { ALCopenslCapture *self = context; /* A new chunk has been written into the ring buffer, advance it. */ ll_ringbuffer_write_advance(self->mRing, 1); } static void ALCopenslCapture_Construct(ALCopenslCapture *self, ALCdevice *device) { ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(ALCopenslCapture, ALCbackend, self); self->mEngineObj = NULL; self->mEngine = NULL; self->mRecordObj = NULL; self->mRing = NULL; self->mSplOffset = 0; self->mFrameSize = 0; } static void ALCopenslCapture_Destruct(ALCopenslCapture *self) { ll_ringbuffer_free(self->mRing); self->mRing = NULL; if(self->mRecordObj != NULL) VCALL0(self->mRecordObj,Destroy)(); self->mRecordObj = NULL; if(self->mEngineObj != NULL) VCALL0(self->mEngineObj,Destroy)(); self->mEngineObj = NULL; self->mEngine = NULL; ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); } static ALCenum ALCopenslCapture_open(ALCopenslCapture *self, const ALCchar *name) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; SLDataLocator_AndroidSimpleBufferQueue loc_bq; SLAndroidSimpleBufferQueueItf bufferQueue; SLDataLocator_IODevice loc_dev; SLDataSource audioSrc; SLDataSink audioSnk; SLresult result; if(!name) name = opensl_device; else if(strcmp(name, opensl_device) != 0) return ALC_INVALID_VALUE; result = slCreateEngine(&self->mEngineObj, 0, NULL, 0, NULL, NULL); PRINTERR(result, "slCreateEngine"); if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mEngineObj,Realize)(SL_BOOLEAN_FALSE); PRINTERR(result, "engine->Realize"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mEngineObj,GetInterface)(SL_IID_ENGINE, &self->mEngine); PRINTERR(result, "engine->GetInterface"); } if(SL_RESULT_SUCCESS == result) { /* Ensure the total length is at least 100ms */ ALsizei length = maxi(device->NumUpdates * device->UpdateSize, device->Frequency / 10); /* Ensure the per-chunk length is at least 10ms, and no more than 50ms. */ ALsizei update_len = clampi(device->NumUpdates*device->UpdateSize / 3, device->Frequency / 100, device->Frequency / 100 * 5); device->UpdateSize = update_len; device->NumUpdates = (length+update_len-1) / update_len; self->mFrameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->AmbiOrder); } loc_dev.locatorType = SL_DATALOCATOR_IODEVICE; loc_dev.deviceType = SL_IODEVICE_AUDIOINPUT; loc_dev.deviceID = SL_DEFAULTDEVICEID_AUDIOINPUT; loc_dev.device = NULL; audioSrc.pLocator = &loc_dev; audioSrc.pFormat = NULL; loc_bq.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE; loc_bq.numBuffers = device->NumUpdates; #ifdef SL_DATAFORMAT_PCM_EX SLDataFormat_PCM_EX format_pcm; format_pcm.formatType = SL_DATAFORMAT_PCM_EX; format_pcm.numChannels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder); format_pcm.sampleRate = device->Frequency * 1000; format_pcm.bitsPerSample = BytesFromDevFmt(device->FmtType) * 8; format_pcm.containerSize = format_pcm.bitsPerSample; format_pcm.channelMask = GetChannelMask(device->FmtChans); format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN : SL_BYTEORDER_BIGENDIAN; format_pcm.representation = GetTypeRepresentation(device->FmtType); #else SLDataFormat_PCM format_pcm; format_pcm.formatType = SL_DATAFORMAT_PCM; format_pcm.numChannels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder); format_pcm.samplesPerSec = device->Frequency * 1000; format_pcm.bitsPerSample = BytesFromDevFmt(device->FmtType) * 8; format_pcm.containerSize = format_pcm.bitsPerSample; format_pcm.channelMask = GetChannelMask(device->FmtChans); format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN : SL_BYTEORDER_BIGENDIAN; #endif audioSnk.pLocator = &loc_bq; audioSnk.pFormat = &format_pcm; if(SL_RESULT_SUCCESS == result) { const SLInterfaceID ids[2] = { SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION }; const SLboolean reqs[2] = { SL_BOOLEAN_TRUE, SL_BOOLEAN_FALSE }; result = VCALL(self->mEngine,CreateAudioRecorder)(&self->mRecordObj, &audioSrc, &audioSnk, COUNTOF(ids), ids, reqs ); PRINTERR(result, "engine->CreateAudioRecorder"); } if(SL_RESULT_SUCCESS == result) { /* Set the record preset to "generic", if possible. */ SLAndroidConfigurationItf config; result = VCALL(self->mRecordObj,GetInterface)(SL_IID_ANDROIDCONFIGURATION, &config); PRINTERR(result, "recordObj->GetInterface SL_IID_ANDROIDCONFIGURATION"); if(SL_RESULT_SUCCESS == result) { SLuint32 preset = SL_ANDROID_RECORDING_PRESET_GENERIC; result = VCALL(config,SetConfiguration)(SL_ANDROID_KEY_RECORDING_PRESET, &preset, sizeof(preset) ); PRINTERR(result, "config->SetConfiguration"); } /* Clear any error since this was optional. */ result = SL_RESULT_SUCCESS; } if(SL_RESULT_SUCCESS == result) { result = VCALL(self->mRecordObj,Realize)(SL_BOOLEAN_FALSE); PRINTERR(result, "recordObj->Realize"); } if(SL_RESULT_SUCCESS == result) { self->mRing = ll_ringbuffer_create(device->NumUpdates + 1, device->UpdateSize * self->mFrameSize); result = VCALL(self->mRecordObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue); PRINTERR(result, "recordObj->GetInterface"); } if(SL_RESULT_SUCCESS == result) { result = VCALL(bufferQueue,RegisterCallback)(ALCopenslCapture_process, self); PRINTERR(result, "bufferQueue->RegisterCallback"); } if(SL_RESULT_SUCCESS == result) { ALsizei chunk_size = device->UpdateSize * self->mFrameSize; ll_ringbuffer_data_t data[2]; size_t i; ll_ringbuffer_get_write_vector(self->mRing, data); for(i = 0;i < data[0].len && SL_RESULT_SUCCESS == result;i++) { result = VCALL(bufferQueue,Enqueue)(data[0].buf + chunk_size*i, chunk_size); PRINTERR(result, "bufferQueue->Enqueue"); } for(i = 0;i < data[1].len && SL_RESULT_SUCCESS == result;i++) { result = VCALL(bufferQueue,Enqueue)(data[1].buf + chunk_size*i, chunk_size); PRINTERR(result, "bufferQueue->Enqueue"); } } if(SL_RESULT_SUCCESS != result) { if(self->mRecordObj != NULL) VCALL0(self->mRecordObj,Destroy)(); self->mRecordObj = NULL; if(self->mEngineObj != NULL) VCALL0(self->mEngineObj,Destroy)(); self->mEngineObj = NULL; self->mEngine = NULL; return ALC_INVALID_VALUE; } alstr_copy_cstr(&device->DeviceName, name); return ALC_NO_ERROR; } static void ALCopenslCapture_close(ALCopenslCapture *self) { ll_ringbuffer_free(self->mRing); self->mRing = NULL; if(self->mRecordObj != NULL) VCALL0(self->mRecordObj,Destroy)(); self->mRecordObj = NULL; if(self->mEngineObj != NULL) VCALL0(self->mEngineObj,Destroy)(); self->mEngineObj = NULL; self->mEngine = NULL; } static ALCboolean ALCopenslCapture_start(ALCopenslCapture *self) { SLRecordItf record; SLresult result; result = VCALL(self->mRecordObj,GetInterface)(SL_IID_RECORD, &record); PRINTERR(result, "recordObj->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL(record,SetRecordState)(SL_RECORDSTATE_RECORDING); PRINTERR(result, "record->SetRecordState"); } if(SL_RESULT_SUCCESS != result) { ALCopenslCapture_lock(self); aluHandleDisconnect(STATIC_CAST(ALCbackend, self)->mDevice); ALCopenslCapture_unlock(self); return ALC_FALSE; } return ALC_TRUE; } static void ALCopenslCapture_stop(ALCopenslCapture *self) { SLRecordItf record; SLresult result; result = VCALL(self->mRecordObj,GetInterface)(SL_IID_RECORD, &record); PRINTERR(result, "recordObj->GetInterface"); if(SL_RESULT_SUCCESS == result) { result = VCALL(record,SetRecordState)(SL_RECORDSTATE_PAUSED); PRINTERR(result, "record->SetRecordState"); } } static ALCenum ALCopenslCapture_captureSamples(ALCopenslCapture *self, ALCvoid *buffer, ALCuint samples) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; ALsizei chunk_size = device->UpdateSize * self->mFrameSize; SLAndroidSimpleBufferQueueItf bufferQueue; ll_ringbuffer_data_t data[2]; SLresult result; size_t advance; ALCuint i; /* Read the desired samples from the ring buffer then advance its read * pointer. */ ll_ringbuffer_get_read_vector(self->mRing, data); advance = 0; for(i = 0;i < samples;) { ALCuint rem = minu(samples - i, device->UpdateSize - self->mSplOffset); memcpy((ALCbyte*)buffer + i*self->mFrameSize, data[0].buf + self->mSplOffset*self->mFrameSize, rem * self->mFrameSize); self->mSplOffset += rem; if(self->mSplOffset == device->UpdateSize) { /* Finished a chunk, reset the offset and advance the read pointer. */ self->mSplOffset = 0; advance++; data[0].len--; if(!data[0].len) data[0] = data[1]; else data[0].buf += chunk_size; } i += rem; } ll_ringbuffer_read_advance(self->mRing, advance); result = VCALL(self->mRecordObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue); PRINTERR(result, "recordObj->GetInterface"); /* Enqueue any newly-writable chunks in the ring buffer. */ ll_ringbuffer_get_write_vector(self->mRing, data); for(i = 0;i < data[0].len && SL_RESULT_SUCCESS == result;i++) { result = VCALL(bufferQueue,Enqueue)(data[0].buf + chunk_size*i, chunk_size); PRINTERR(result, "bufferQueue->Enqueue"); } for(i = 0;i < data[1].len && SL_RESULT_SUCCESS == result;i++) { result = VCALL(bufferQueue,Enqueue)(data[1].buf + chunk_size*i, chunk_size); PRINTERR(result, "bufferQueue->Enqueue"); } if(SL_RESULT_SUCCESS != result) { ALCopenslCapture_lock(self); aluHandleDisconnect(device); ALCopenslCapture_unlock(self); return ALC_INVALID_DEVICE; } return ALC_NO_ERROR; } static ALCuint ALCopenslCapture_availableSamples(ALCopenslCapture *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; return ll_ringbuffer_read_space(self->mRing) * device->UpdateSize; } typedef struct ALCopenslBackendFactory { DERIVE_FROM_TYPE(ALCbackendFactory); } ALCopenslBackendFactory; #define ALCOPENSLBACKENDFACTORY_INITIALIZER { { GET_VTABLE2(ALCopenslBackendFactory, ALCbackendFactory) } } static ALCboolean ALCopenslBackendFactory_init(ALCopenslBackendFactory* UNUSED(self)) { return ALC_TRUE; } static void ALCopenslBackendFactory_deinit(ALCopenslBackendFactory* UNUSED(self)) { } static ALCboolean ALCopenslBackendFactory_querySupport(ALCopenslBackendFactory* UNUSED(self), ALCbackend_Type type) { if(type == ALCbackend_Playback || type == ALCbackend_Capture) return ALC_TRUE; return ALC_FALSE; } static void ALCopenslBackendFactory_probe(ALCopenslBackendFactory* UNUSED(self), enum DevProbe type) { switch(type) { case ALL_DEVICE_PROBE: AppendAllDevicesList(opensl_device); break; case CAPTURE_DEVICE_PROBE: AppendAllDevicesList(opensl_device); break; } } static ALCbackend* ALCopenslBackendFactory_createBackend(ALCopenslBackendFactory* UNUSED(self), ALCdevice *device, ALCbackend_Type type) { if(type == ALCbackend_Playback) { ALCopenslPlayback *backend; NEW_OBJ(backend, ALCopenslPlayback)(device); if(!backend) return NULL; return STATIC_CAST(ALCbackend, backend); } if(type == ALCbackend_Capture) { ALCopenslCapture *backend; NEW_OBJ(backend, ALCopenslCapture)(device); if(!backend) return NULL; return STATIC_CAST(ALCbackend, backend); } return NULL; } DEFINE_ALCBACKENDFACTORY_VTABLE(ALCopenslBackendFactory); ALCbackendFactory *ALCopenslBackendFactory_getFactory(void) { static ALCopenslBackendFactory factory = ALCOPENSLBACKENDFACTORY_INITIALIZER; return STATIC_CAST(ALCbackendFactory, &factory); }