/** * OpenAL cross platform audio library * Copyright (C) 2009 by Konstantinos Natsakis * Copyright (C) 2010 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "backends/pulseaudio.h" #include #include #include #include #include #include #include #include "alMain.h" #include "alu.h" #include "alconfig.h" #include "compat.h" #include namespace { #ifdef HAVE_DYNLOAD void *pa_handle; #define MAKE_FUNC(x) decltype(x) * p##x MAKE_FUNC(pa_context_unref); MAKE_FUNC(pa_sample_spec_valid); MAKE_FUNC(pa_frame_size); MAKE_FUNC(pa_stream_drop); MAKE_FUNC(pa_strerror); MAKE_FUNC(pa_context_get_state); MAKE_FUNC(pa_stream_get_state); MAKE_FUNC(pa_threaded_mainloop_signal); MAKE_FUNC(pa_stream_peek); MAKE_FUNC(pa_threaded_mainloop_wait); MAKE_FUNC(pa_threaded_mainloop_unlock); MAKE_FUNC(pa_threaded_mainloop_in_thread); MAKE_FUNC(pa_context_new); MAKE_FUNC(pa_threaded_mainloop_stop); MAKE_FUNC(pa_context_disconnect); MAKE_FUNC(pa_threaded_mainloop_start); MAKE_FUNC(pa_threaded_mainloop_get_api); MAKE_FUNC(pa_context_set_state_callback); MAKE_FUNC(pa_stream_write); MAKE_FUNC(pa_xfree); MAKE_FUNC(pa_stream_connect_record); MAKE_FUNC(pa_stream_connect_playback); MAKE_FUNC(pa_stream_readable_size); MAKE_FUNC(pa_stream_writable_size); MAKE_FUNC(pa_stream_is_corked); MAKE_FUNC(pa_stream_cork); MAKE_FUNC(pa_stream_is_suspended); MAKE_FUNC(pa_stream_get_device_name); MAKE_FUNC(pa_stream_get_latency); MAKE_FUNC(pa_path_get_filename); MAKE_FUNC(pa_get_binary_name); MAKE_FUNC(pa_threaded_mainloop_free); MAKE_FUNC(pa_context_errno); MAKE_FUNC(pa_xmalloc); MAKE_FUNC(pa_stream_unref); MAKE_FUNC(pa_threaded_mainloop_accept); MAKE_FUNC(pa_stream_set_write_callback); MAKE_FUNC(pa_threaded_mainloop_new); MAKE_FUNC(pa_context_connect); MAKE_FUNC(pa_stream_set_buffer_attr); MAKE_FUNC(pa_stream_get_buffer_attr); MAKE_FUNC(pa_stream_get_sample_spec); MAKE_FUNC(pa_stream_get_time); MAKE_FUNC(pa_stream_set_read_callback); MAKE_FUNC(pa_stream_set_state_callback); MAKE_FUNC(pa_stream_set_moved_callback); MAKE_FUNC(pa_stream_set_underflow_callback); MAKE_FUNC(pa_stream_new_with_proplist); MAKE_FUNC(pa_stream_disconnect); MAKE_FUNC(pa_threaded_mainloop_lock); MAKE_FUNC(pa_channel_map_init_auto); MAKE_FUNC(pa_channel_map_parse); MAKE_FUNC(pa_channel_map_snprint); MAKE_FUNC(pa_channel_map_equal); MAKE_FUNC(pa_context_get_server_info); MAKE_FUNC(pa_context_get_sink_info_by_name); MAKE_FUNC(pa_context_get_sink_info_list); MAKE_FUNC(pa_context_get_source_info_by_name); MAKE_FUNC(pa_context_get_source_info_list); MAKE_FUNC(pa_operation_get_state); MAKE_FUNC(pa_operation_unref); MAKE_FUNC(pa_proplist_new); MAKE_FUNC(pa_proplist_free); MAKE_FUNC(pa_proplist_set); MAKE_FUNC(pa_channel_map_superset); MAKE_FUNC(pa_stream_set_buffer_attr_callback); MAKE_FUNC(pa_stream_begin_write); #undef MAKE_FUNC #ifndef IN_IDE_PARSER #define pa_context_unref ppa_context_unref #define pa_sample_spec_valid ppa_sample_spec_valid #define pa_frame_size ppa_frame_size #define pa_stream_drop ppa_stream_drop #define pa_strerror ppa_strerror #define pa_context_get_state ppa_context_get_state #define pa_stream_get_state ppa_stream_get_state #define pa_threaded_mainloop_signal ppa_threaded_mainloop_signal #define pa_stream_peek ppa_stream_peek #define pa_threaded_mainloop_wait ppa_threaded_mainloop_wait #define pa_threaded_mainloop_unlock ppa_threaded_mainloop_unlock #define pa_threaded_mainloop_in_thread ppa_threaded_mainloop_in_thread #define pa_context_new ppa_context_new #define pa_threaded_mainloop_stop ppa_threaded_mainloop_stop #define pa_context_disconnect ppa_context_disconnect #define pa_threaded_mainloop_start ppa_threaded_mainloop_start #define pa_threaded_mainloop_get_api ppa_threaded_mainloop_get_api #define pa_context_set_state_callback ppa_context_set_state_callback #define pa_stream_write ppa_stream_write #define pa_xfree ppa_xfree #define pa_stream_connect_record ppa_stream_connect_record #define pa_stream_connect_playback ppa_stream_connect_playback #define pa_stream_readable_size ppa_stream_readable_size #define pa_stream_writable_size ppa_stream_writable_size #define pa_stream_is_corked ppa_stream_is_corked #define pa_stream_cork ppa_stream_cork #define pa_stream_is_suspended ppa_stream_is_suspended #define pa_stream_get_device_name ppa_stream_get_device_name #define pa_stream_get_latency ppa_stream_get_latency #define pa_path_get_filename ppa_path_get_filename #define pa_get_binary_name ppa_get_binary_name #define pa_threaded_mainloop_free ppa_threaded_mainloop_free #define pa_context_errno ppa_context_errno #define pa_xmalloc ppa_xmalloc #define pa_stream_unref ppa_stream_unref #define pa_threaded_mainloop_accept ppa_threaded_mainloop_accept #define pa_stream_set_write_callback ppa_stream_set_write_callback #define pa_threaded_mainloop_new ppa_threaded_mainloop_new #define pa_context_connect ppa_context_connect #define pa_stream_set_buffer_attr ppa_stream_set_buffer_attr #define pa_stream_get_buffer_attr ppa_stream_get_buffer_attr #define pa_stream_get_sample_spec ppa_stream_get_sample_spec #define pa_stream_get_time ppa_stream_get_time #define pa_stream_set_read_callback ppa_stream_set_read_callback #define pa_stream_set_state_callback ppa_stream_set_state_callback #define pa_stream_set_moved_callback ppa_stream_set_moved_callback #define pa_stream_set_underflow_callback ppa_stream_set_underflow_callback #define pa_stream_new_with_proplist ppa_stream_new_with_proplist #define pa_stream_disconnect ppa_stream_disconnect #define pa_threaded_mainloop_lock ppa_threaded_mainloop_lock #define pa_channel_map_init_auto ppa_channel_map_init_auto #define pa_channel_map_parse ppa_channel_map_parse #define pa_channel_map_snprint ppa_channel_map_snprint #define pa_channel_map_equal ppa_channel_map_equal #define pa_context_get_server_info ppa_context_get_server_info #define pa_context_get_sink_info_by_name ppa_context_get_sink_info_by_name #define pa_context_get_sink_info_list ppa_context_get_sink_info_list #define pa_context_get_source_info_by_name ppa_context_get_source_info_by_name #define pa_context_get_source_info_list ppa_context_get_source_info_list #define pa_operation_get_state ppa_operation_get_state #define pa_operation_unref ppa_operation_unref #define pa_proplist_new ppa_proplist_new #define pa_proplist_free ppa_proplist_free #define pa_proplist_set ppa_proplist_set #define pa_channel_map_superset ppa_channel_map_superset #define pa_stream_set_buffer_attr_callback ppa_stream_set_buffer_attr_callback #define pa_stream_begin_write ppa_stream_begin_write #endif /* IN_IDE_PARSER */ #endif ALCboolean pulse_load(void) { ALCboolean ret{ALC_TRUE}; #ifdef HAVE_DYNLOAD if(!pa_handle) { std::string missing_funcs; #ifdef _WIN32 #define PALIB "libpulse-0.dll" #elif defined(__APPLE__) && defined(__MACH__) #define PALIB "libpulse.0.dylib" #else #define PALIB "libpulse.so.0" #endif pa_handle = LoadLib(PALIB); if(!pa_handle) { WARN("Failed to load %s\n", PALIB); return ALC_FALSE; } #define LOAD_FUNC(x) do { \ p##x = reinterpret_cast(GetSymbol(pa_handle, #x)); \ if(!(p##x)) { \ ret = ALC_FALSE; \ missing_funcs += "\n" #x; \ } \ } while(0) LOAD_FUNC(pa_context_unref); LOAD_FUNC(pa_sample_spec_valid); LOAD_FUNC(pa_stream_drop); LOAD_FUNC(pa_frame_size); LOAD_FUNC(pa_strerror); LOAD_FUNC(pa_context_get_state); LOAD_FUNC(pa_stream_get_state); LOAD_FUNC(pa_threaded_mainloop_signal); LOAD_FUNC(pa_stream_peek); LOAD_FUNC(pa_threaded_mainloop_wait); LOAD_FUNC(pa_threaded_mainloop_unlock); LOAD_FUNC(pa_threaded_mainloop_in_thread); LOAD_FUNC(pa_context_new); LOAD_FUNC(pa_threaded_mainloop_stop); LOAD_FUNC(pa_context_disconnect); LOAD_FUNC(pa_threaded_mainloop_start); LOAD_FUNC(pa_threaded_mainloop_get_api); LOAD_FUNC(pa_context_set_state_callback); LOAD_FUNC(pa_stream_write); LOAD_FUNC(pa_xfree); LOAD_FUNC(pa_stream_connect_record); LOAD_FUNC(pa_stream_connect_playback); LOAD_FUNC(pa_stream_readable_size); LOAD_FUNC(pa_stream_writable_size); LOAD_FUNC(pa_stream_is_corked); LOAD_FUNC(pa_stream_cork); LOAD_FUNC(pa_stream_is_suspended); LOAD_FUNC(pa_stream_get_device_name); LOAD_FUNC(pa_stream_get_latency); LOAD_FUNC(pa_path_get_filename); LOAD_FUNC(pa_get_binary_name); LOAD_FUNC(pa_threaded_mainloop_free); LOAD_FUNC(pa_context_errno); LOAD_FUNC(pa_xmalloc); LOAD_FUNC(pa_stream_unref); LOAD_FUNC(pa_threaded_mainloop_accept); LOAD_FUNC(pa_stream_set_write_callback); LOAD_FUNC(pa_threaded_mainloop_new); LOAD_FUNC(pa_context_connect); LOAD_FUNC(pa_stream_set_buffer_attr); LOAD_FUNC(pa_stream_get_buffer_attr); LOAD_FUNC(pa_stream_get_sample_spec); LOAD_FUNC(pa_stream_get_time); LOAD_FUNC(pa_stream_set_read_callback); LOAD_FUNC(pa_stream_set_state_callback); LOAD_FUNC(pa_stream_set_moved_callback); LOAD_FUNC(pa_stream_set_underflow_callback); LOAD_FUNC(pa_stream_new_with_proplist); LOAD_FUNC(pa_stream_disconnect); LOAD_FUNC(pa_threaded_mainloop_lock); LOAD_FUNC(pa_channel_map_init_auto); LOAD_FUNC(pa_channel_map_parse); LOAD_FUNC(pa_channel_map_snprint); LOAD_FUNC(pa_channel_map_equal); LOAD_FUNC(pa_context_get_server_info); LOAD_FUNC(pa_context_get_sink_info_by_name); LOAD_FUNC(pa_context_get_sink_info_list); LOAD_FUNC(pa_context_get_source_info_by_name); LOAD_FUNC(pa_context_get_source_info_list); LOAD_FUNC(pa_operation_get_state); LOAD_FUNC(pa_operation_unref); LOAD_FUNC(pa_proplist_new); LOAD_FUNC(pa_proplist_free); LOAD_FUNC(pa_proplist_set); LOAD_FUNC(pa_channel_map_superset); LOAD_FUNC(pa_stream_set_buffer_attr_callback); LOAD_FUNC(pa_stream_begin_write); #undef LOAD_FUNC if(ret == ALC_FALSE) { WARN("Missing expected functions:%s\n", missing_funcs.c_str()); CloseLib(pa_handle); pa_handle = nullptr; } } #endif /* HAVE_DYNLOAD */ return ret; } /* *grumble* Don't use enums for bitflags. */ inline pa_stream_flags_t operator|(pa_stream_flags_t lhs, pa_stream_flags_t rhs) { return pa_stream_flags_t(int(lhs) | int(rhs)); } inline pa_stream_flags_t operator|=(pa_stream_flags_t &lhs, pa_stream_flags_t rhs) { lhs = pa_stream_flags_t(int(lhs) | int(rhs)); return lhs; } inline pa_context_flags_t operator|=(pa_context_flags_t &lhs, pa_context_flags_t rhs) { lhs = pa_context_flags_t(int(lhs) | int(rhs)); return lhs; } class palock_guard { pa_threaded_mainloop *mLoop; public: explicit palock_guard(pa_threaded_mainloop *loop) : mLoop(loop) { pa_threaded_mainloop_lock(mLoop); } ~palock_guard() { pa_threaded_mainloop_unlock(mLoop); } palock_guard(const palock_guard&) = delete; palock_guard& operator=(const palock_guard&) = delete; }; class unique_palock { pa_threaded_mainloop *mLoop{nullptr}; bool mLocked{false}; public: unique_palock() noexcept = default; explicit unique_palock(pa_threaded_mainloop *loop) : mLoop(loop) { pa_threaded_mainloop_lock(mLoop); mLocked = true; } unique_palock(unique_palock&& rhs) : mLoop(rhs.mLoop), mLocked(rhs.mLocked) { rhs.mLoop = nullptr; rhs.mLocked = false; } ~unique_palock() { if(mLocked) pa_threaded_mainloop_unlock(mLoop); } unique_palock& operator=(const unique_palock&) = delete; unique_palock& operator=(unique_palock&& rhs) { if(mLocked) pa_threaded_mainloop_unlock(mLoop); mLoop = rhs.mLoop; rhs.mLoop = nullptr; mLocked = rhs.mLocked; rhs.mLocked = false; return *this; } void lock() { pa_threaded_mainloop_lock(mLoop); mLocked = true; } void unlock() { mLocked = false; pa_threaded_mainloop_unlock(mLoop); } }; /* Global flags and properties */ pa_context_flags_t pulse_ctx_flags; pa_proplist *prop_filter; /* PulseAudio Event Callbacks */ void context_state_callback(pa_context *context, void *pdata) { auto loop = static_cast(pdata); pa_context_state_t state{pa_context_get_state(context)}; if(state == PA_CONTEXT_READY || !PA_CONTEXT_IS_GOOD(state)) pa_threaded_mainloop_signal(loop, 0); } void stream_state_callback(pa_stream *stream, void *pdata) { auto loop = static_cast(pdata); pa_stream_state_t state{pa_stream_get_state(stream)}; if(state == PA_STREAM_READY || !PA_STREAM_IS_GOOD(state)) pa_threaded_mainloop_signal(loop, 0); } void stream_success_callback(pa_stream *UNUSED(stream), int UNUSED(success), void *pdata) { auto loop = static_cast(pdata); pa_threaded_mainloop_signal(loop, 0); } void wait_for_operation(pa_operation *op, pa_threaded_mainloop *loop) { if(op) { while(pa_operation_get_state(op) == PA_OPERATION_RUNNING) pa_threaded_mainloop_wait(loop); pa_operation_unref(op); } } pa_context *connect_context(pa_threaded_mainloop *loop, ALboolean silent) { const char *name{"OpenAL Soft"}; const PathNamePair &binname = GetProcBinary(); if(!binname.fname.empty()) name = binname.fname.c_str(); pa_context *context{pa_context_new(pa_threaded_mainloop_get_api(loop), name)}; if(!context) { ERR("pa_context_new() failed\n"); return nullptr; } pa_context_set_state_callback(context, context_state_callback, loop); int err; if((err=pa_context_connect(context, nullptr, pulse_ctx_flags, nullptr)) >= 0) { pa_context_state_t state; while((state=pa_context_get_state(context)) != PA_CONTEXT_READY) { if(!PA_CONTEXT_IS_GOOD(state)) { err = pa_context_errno(context); if(err > 0) err = -err; break; } pa_threaded_mainloop_wait(loop); } } pa_context_set_state_callback(context, nullptr, nullptr); if(err < 0) { if(!silent) ERR("Context did not connect: %s\n", pa_strerror(err)); pa_context_unref(context); context = nullptr; } return context; } using MainloopContextPair = std::pair; MainloopContextPair pulse_open(void(*state_cb)(pa_context*,void*), void *ptr) { pa_threaded_mainloop *loop{pa_threaded_mainloop_new()}; if(UNLIKELY(!loop)) { ERR("pa_threaded_mainloop_new() failed!\n"); return {nullptr, nullptr}; } if(UNLIKELY(pa_threaded_mainloop_start(loop) < 0)) { ERR("pa_threaded_mainloop_start() failed\n"); pa_threaded_mainloop_free(loop); return {nullptr, nullptr}; } unique_palock palock{loop}; pa_context *context{connect_context(loop, AL_FALSE)}; if(UNLIKELY(!context)) { palock = unique_palock{}; pa_threaded_mainloop_stop(loop); pa_threaded_mainloop_free(loop); return {nullptr, nullptr}; } pa_context_set_state_callback(context, state_cb, ptr); return {loop, context}; } void pulse_close(pa_threaded_mainloop *loop, pa_context *context, pa_stream *stream) { { palock_guard _{loop}; if(stream) { pa_stream_set_state_callback(stream, nullptr, nullptr); pa_stream_set_moved_callback(stream, nullptr, nullptr); pa_stream_set_write_callback(stream, nullptr, nullptr); pa_stream_set_buffer_attr_callback(stream, nullptr, nullptr); pa_stream_disconnect(stream); pa_stream_unref(stream); } pa_context_disconnect(context); pa_context_unref(context); } pa_threaded_mainloop_stop(loop); pa_threaded_mainloop_free(loop); } struct DevMap { std::string name; std::string device_name; template DevMap(StrT0&& name_, StrT1&& devname_) : name{std::forward(name_)}, device_name{std::forward(devname_)} { } }; bool checkName(const al::vector &list, const std::string &name) { return std::find_if(list.cbegin(), list.cend(), [&name](const DevMap &entry) -> bool { return entry.name == name; } ) != list.cend(); } al::vector PlaybackDevices; al::vector CaptureDevices; pa_stream *pulse_connect_stream(const char *device_name, pa_threaded_mainloop *loop, pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap, BackendType type) { pa_stream *stream{pa_stream_new_with_proplist(context, (type==BackendType::Playback) ? "Playback Stream" : "Capture Stream", spec, chanmap, prop_filter)}; if(!stream) { ERR("pa_stream_new_with_proplist() failed: %s\n", pa_strerror(pa_context_errno(context))); return nullptr; } pa_stream_set_state_callback(stream, stream_state_callback, loop); int err{(type==BackendType::Playback) ? pa_stream_connect_playback(stream, device_name, attr, flags, nullptr, nullptr) : pa_stream_connect_record(stream, device_name, attr, flags)}; if(err < 0) { ERR("Stream did not connect: %s\n", pa_strerror(err)); pa_stream_unref(stream); return nullptr; } pa_stream_state_t state; while((state=pa_stream_get_state(stream)) != PA_STREAM_READY) { if(!PA_STREAM_IS_GOOD(state)) { ERR("Stream did not get ready: %s\n", pa_strerror(pa_context_errno(context))); pa_stream_unref(stream); return nullptr; } pa_threaded_mainloop_wait(loop); } pa_stream_set_state_callback(stream, nullptr, nullptr); return stream; } void device_sink_callback(pa_context *UNUSED(context), const pa_sink_info *info, int eol, void *pdata) { auto loop = static_cast(pdata); if(eol) { pa_threaded_mainloop_signal(loop, 0); return; } /* Skip this device is if it's already in the list. */ if(std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [info](const DevMap &entry) -> bool { return entry.device_name == info->name; } ) != PlaybackDevices.cend()) return; /* Make sure the display name (description) is unique. Append a number * counter as needed. */ int count{1}; std::string newname{info->description}; while(checkName(PlaybackDevices, newname)) { newname = info->description; newname += " #"; newname += std::to_string(++count); } PlaybackDevices.emplace_back(std::move(newname), info->name); DevMap &newentry = PlaybackDevices.back(); TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str()); } void probePlaybackDevices(void) { PlaybackDevices.clear(); pa_threaded_mainloop *loop{pa_threaded_mainloop_new()}; if(loop && pa_threaded_mainloop_start(loop) >= 0) { unique_palock palock{loop}; pa_context *context{connect_context(loop, AL_FALSE)}; if(context) { pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS | PA_STREAM_DONT_MOVE}; pa_sample_spec spec; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 2; pa_stream *stream{pulse_connect_stream(nullptr, loop, context, flags, nullptr, &spec, nullptr, BackendType::Playback)}; if(stream) { pa_operation *op{pa_context_get_sink_info_by_name(context, pa_stream_get_device_name(stream), device_sink_callback, loop)}; wait_for_operation(op, loop); pa_stream_disconnect(stream); pa_stream_unref(stream); stream = nullptr; } pa_operation *op{pa_context_get_sink_info_list(context, device_sink_callback, loop)}; wait_for_operation(op, loop); pa_context_disconnect(context); pa_context_unref(context); } palock = unique_palock{}; pa_threaded_mainloop_stop(loop); } if(loop) pa_threaded_mainloop_free(loop); } void device_source_callback(pa_context *UNUSED(context), const pa_source_info *info, int eol, void *pdata) { auto loop = static_cast(pdata); if(eol) { pa_threaded_mainloop_signal(loop, 0); return; } /* Skip this device is if it's already in the list. */ if(std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [info](const DevMap &entry) -> bool { return entry.device_name == info->name; } ) != CaptureDevices.cend()) return; /* Make sure the display name (description) is unique. Append a number * counter as needed. */ int count{1}; std::string newname{info->description}; while(checkName(CaptureDevices, newname)) { newname = info->description; newname += " #"; newname += std::to_string(++count); } CaptureDevices.emplace_back(std::move(newname), info->name); DevMap &newentry = CaptureDevices.back(); TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str()); } void probeCaptureDevices(void) { CaptureDevices.clear(); pa_threaded_mainloop *loop{pa_threaded_mainloop_new()}; if(loop && pa_threaded_mainloop_start(loop) >= 0) { unique_palock palock{loop}; pa_context *context{connect_context(loop, AL_FALSE)}; if(context) { pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS | PA_STREAM_DONT_MOVE}; pa_sample_spec spec; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 1; pa_stream *stream{pulse_connect_stream(nullptr, loop, context, flags, nullptr, &spec, nullptr, BackendType::Capture)}; if(stream) { pa_operation *op{pa_context_get_source_info_by_name(context, pa_stream_get_device_name(stream), device_source_callback, loop)}; wait_for_operation(op, loop); pa_stream_disconnect(stream); pa_stream_unref(stream); stream = nullptr; } pa_operation *op{pa_context_get_source_info_list(context, device_source_callback, loop)}; wait_for_operation(op, loop); pa_context_disconnect(context); pa_context_unref(context); } palock.unlock(); pa_threaded_mainloop_stop(loop); } if(loop) pa_threaded_mainloop_free(loop); } struct PulsePlayback final : public BackendBase { PulsePlayback(ALCdevice *device) noexcept : BackendBase{device} { } ~PulsePlayback() override; static void bufferAttrCallbackC(pa_stream *stream, void *pdata); void bufferAttrCallback(pa_stream *stream); static void contextStateCallbackC(pa_context *context, void *pdata); void contextStateCallback(pa_context *context); static void streamStateCallbackC(pa_stream *stream, void *pdata); void streamStateCallback(pa_stream *stream); static void streamWriteCallbackC(pa_stream *stream, size_t nbytes, void *pdata); void streamWriteCallback(pa_stream *stream, size_t nbytes); static void sinkInfoCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata); void sinkInfoCallback(pa_context *context, const pa_sink_info *info, int eol); static void sinkNameCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata); void sinkNameCallback(pa_context *context, const pa_sink_info *info, int eol); static void streamMovedCallbackC(pa_stream *stream, void *pdata); void streamMovedCallback(pa_stream *stream); ALCenum open(const ALCchar *name) override; ALCboolean reset() override; ALCboolean start() override; void stop() override; ClockLatency getClockLatency() override; void lock() noexcept override; void unlock() noexcept override; std::string mDeviceName; pa_buffer_attr mAttr; pa_sample_spec mSpec; pa_threaded_mainloop *mLoop{nullptr}; pa_stream *mStream{nullptr}; pa_context *mContext{nullptr}; ALuint mBufferSize{0u}; ALuint mFrameSize{0u}; static constexpr inline const char *CurrentPrefix() noexcept { return "PulsePlayback::"; } DEF_NEWDEL(PulsePlayback) }; PulsePlayback::~PulsePlayback() { if(!mLoop) return; pulse_close(mLoop, mContext, mStream); mLoop = nullptr; mContext = nullptr; mStream = nullptr; } void PulsePlayback::bufferAttrCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->bufferAttrCallback(stream); } void PulsePlayback::bufferAttrCallback(pa_stream *stream) { /* FIXME: Update the device's UpdateSize (and/or NumUpdates) using the new * buffer attributes? Changing UpdateSize will change the ALC_REFRESH * property, which probably shouldn't change between device resets. But * leaving it alone means ALC_REFRESH will be off. */ mAttr = *(pa_stream_get_buffer_attr(stream)); TRACE("minreq=%d, tlength=%d, prebuf=%d\n", mAttr.minreq, mAttr.tlength, mAttr.prebuf); const ALuint num_periods{(mAttr.tlength + mAttr.minreq/2u) / mAttr.minreq}; mBufferSize = maxu(num_periods, 2u) * mAttr.minreq; } void PulsePlayback::contextStateCallbackC(pa_context *context, void *pdata) { static_cast(pdata)->contextStateCallback(context); } void PulsePlayback::contextStateCallback(pa_context *context) { if(pa_context_get_state(context) == PA_CONTEXT_FAILED) { ERR("Received context failure!\n"); aluHandleDisconnect(mDevice, "Playback state failure"); } pa_threaded_mainloop_signal(mLoop, 0); } void PulsePlayback::streamStateCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->streamStateCallback(stream); } void PulsePlayback::streamStateCallback(pa_stream *stream) { if(pa_stream_get_state(stream) == PA_STREAM_FAILED) { ERR("Received stream failure!\n"); aluHandleDisconnect(mDevice, "Playback stream failure"); } pa_threaded_mainloop_signal(mLoop, 0); } void PulsePlayback::streamWriteCallbackC(pa_stream *stream, size_t nbytes, void *pdata) { static_cast(pdata)->streamWriteCallback(stream, nbytes); } void PulsePlayback::streamWriteCallback(pa_stream *stream, size_t nbytes) { /* Round down to the nearest period/minreq multiple if doing more than 1. */ if(nbytes > mAttr.minreq) nbytes -= nbytes%mAttr.minreq; void *buf{pa_xmalloc(nbytes)}; aluMixData(mDevice, buf, nbytes/mFrameSize); int ret{pa_stream_write(stream, buf, nbytes, pa_xfree, 0, PA_SEEK_RELATIVE)}; if(UNLIKELY(ret != PA_OK)) ERR("Failed to write to stream: %d, %s\n", ret, pa_strerror(ret)); } void PulsePlayback::sinkInfoCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata) { static_cast(pdata)->sinkInfoCallback(context, info, eol); } void PulsePlayback::sinkInfoCallback(pa_context* UNUSED(context), const pa_sink_info *info, int eol) { struct ChannelMap { DevFmtChannels chans; pa_channel_map map; }; static constexpr std::array chanmaps{{ { DevFmtX71, { 8, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } } }, { DevFmtX61, { 7, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_CENTER, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } } }, { DevFmtX51, { 6, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } } }, { DevFmtX51Rear, { 6, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT } } }, { DevFmtQuad, { 4, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT } } }, { DevFmtStereo, { 2, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT } } }, { DevFmtMono, { 1, {PA_CHANNEL_POSITION_MONO} } } }}; if(eol) { pa_threaded_mainloop_signal(mLoop, 0); return; } auto chanmap = std::find_if(chanmaps.cbegin(), chanmaps.cend(), [info](const ChannelMap &chanmap) -> bool { return pa_channel_map_superset(&info->channel_map, &chanmap.map); } ); if(chanmap != chanmaps.cend()) { if(!(mDevice->Flags&DEVICE_CHANNELS_REQUEST)) mDevice->FmtChans = chanmap->chans; } else { char chanmap_str[PA_CHANNEL_MAP_SNPRINT_MAX]{}; pa_channel_map_snprint(chanmap_str, sizeof(chanmap_str), &info->channel_map); WARN("Failed to find format for channel map:\n %s\n", chanmap_str); } if(info->active_port) TRACE("Active port: %s (%s)\n", info->active_port->name, info->active_port->description); mDevice->IsHeadphones = (mDevice->FmtChans == DevFmtStereo && info->active_port && strcmp(info->active_port->name, "analog-output-headphones") == 0); } void PulsePlayback::sinkNameCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata) { static_cast(pdata)->sinkNameCallback(context, info, eol); } void PulsePlayback::sinkNameCallback(pa_context* UNUSED(context), const pa_sink_info *info, int eol) { if(eol) { pa_threaded_mainloop_signal(mLoop, 0); return; } mDevice->DeviceName = info->description; } void PulsePlayback::streamMovedCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->streamMovedCallback(stream); } void PulsePlayback::streamMovedCallback(pa_stream *stream) { mDeviceName = pa_stream_get_device_name(stream); TRACE("Stream moved to %s\n", mDeviceName.c_str()); } ALCenum PulsePlayback::open(const ALCchar *name) { const char *pulse_name{nullptr}; const char *dev_name{nullptr}; if(name) { if(PlaybackDevices.empty()) probePlaybackDevices(); auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; } ); if(iter == PlaybackDevices.cend()) return ALC_INVALID_VALUE; pulse_name = iter->device_name.c_str(); dev_name = iter->name.c_str(); } std::tie(mLoop, mContext) = pulse_open(&PulsePlayback::contextStateCallbackC, this); if(!mLoop) return ALC_INVALID_VALUE; unique_palock palock{mLoop}; pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; pa_sample_spec spec{}; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 2; TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)"); if(!pulse_name) { pulse_name = getenv("ALSOFT_PULSE_DEFAULT"); if(pulse_name && !pulse_name[0]) pulse_name = nullptr; } mStream = pulse_connect_stream(pulse_name, mLoop, mContext, flags, nullptr, &spec, nullptr, BackendType::Playback); if(!mStream) { palock = unique_palock{}; pulse_close(mLoop, mContext, mStream); mLoop = nullptr; mContext = nullptr; return ALC_INVALID_VALUE; } pa_stream_set_moved_callback(mStream, &PulsePlayback::streamMovedCallbackC, this); mFrameSize = pa_frame_size(pa_stream_get_sample_spec(mStream)); mDeviceName = pa_stream_get_device_name(mStream); if(!dev_name) { pa_operation *op{pa_context_get_sink_info_by_name(mContext, mDeviceName.c_str(), &PulsePlayback::sinkNameCallbackC, this)}; wait_for_operation(op, mLoop); } else mDevice->DeviceName = dev_name; return ALC_NO_ERROR; } ALCboolean PulsePlayback::reset() { unique_palock palock{mLoop}; if(mStream) { pa_stream_set_state_callback(mStream, nullptr, nullptr); pa_stream_set_moved_callback(mStream, nullptr, nullptr); pa_stream_set_write_callback(mStream, nullptr, nullptr); pa_stream_set_buffer_attr_callback(mStream, nullptr, nullptr); pa_stream_disconnect(mStream); pa_stream_unref(mStream); mStream = nullptr; } pa_operation *op{pa_context_get_sink_info_by_name(mContext, mDeviceName.c_str(), &PulsePlayback::sinkInfoCallbackC, this)}; wait_for_operation(op, mLoop); pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_AUTO_TIMING_UPDATE}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "adjust-latency", 0)) flags |= PA_STREAM_ADJUST_LATENCY; if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "fix-rate", 0) || !(mDevice->Flags&DEVICE_FREQUENCY_REQUEST)) flags |= PA_STREAM_FIX_RATE; switch(mDevice->FmtType) { case DevFmtByte: mDevice->FmtType = DevFmtUByte; /* fall-through */ case DevFmtUByte: mSpec.format = PA_SAMPLE_U8; break; case DevFmtUShort: mDevice->FmtType = DevFmtShort; /* fall-through */ case DevFmtShort: mSpec.format = PA_SAMPLE_S16NE; break; case DevFmtUInt: mDevice->FmtType = DevFmtInt; /* fall-through */ case DevFmtInt: mSpec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: mSpec.format = PA_SAMPLE_FLOAT32NE; break; } mSpec.rate = mDevice->Frequency; mSpec.channels = mDevice->channelsFromFmt(); if(pa_sample_spec_valid(&mSpec) == 0) { ERR("Invalid sample format\n"); return ALC_FALSE; } const char *mapname{nullptr}; pa_channel_map chanmap; switch(mDevice->FmtChans) { case DevFmtMono: mapname = "mono"; break; case DevFmtAmbi3D: mDevice->FmtChans = DevFmtStereo; /*fall-through*/ case DevFmtStereo: mapname = "front-left,front-right"; break; case DevFmtQuad: mapname = "front-left,front-right,rear-left,rear-right"; break; case DevFmtX51: mapname = "front-left,front-right,front-center,lfe,side-left,side-right"; break; case DevFmtX51Rear: mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right"; break; case DevFmtX61: mapname = "front-left,front-right,front-center,lfe,rear-center,side-left,side-right"; break; case DevFmtX71: mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right,side-left,side-right"; break; } if(!pa_channel_map_parse(&chanmap, mapname)) { ERR("Failed to build channel map for %s\n", DevFmtChannelsString(mDevice->FmtChans)); return ALC_FALSE; } SetDefaultWFXChannelOrder(mDevice); size_t period_size{mDevice->UpdateSize * pa_frame_size(&mSpec)}; mAttr.maxlength = -1; mAttr.tlength = period_size * maxu(mDevice->NumUpdates, 2); mAttr.prebuf = 0; mAttr.minreq = period_size; mAttr.fragsize = -1; mStream = pulse_connect_stream(mDeviceName.c_str(), mLoop, mContext, flags, &mAttr, &mSpec, &chanmap, BackendType::Playback); if(!mStream) return ALC_FALSE; pa_stream_set_state_callback(mStream, &PulsePlayback::streamStateCallbackC, this); pa_stream_set_moved_callback(mStream, &PulsePlayback::streamMovedCallbackC, this); mSpec = *(pa_stream_get_sample_spec(mStream)); mFrameSize = pa_frame_size(&mSpec); if(mDevice->Frequency != mSpec.rate) { /* Server updated our playback rate, so modify the buffer attribs * accordingly. */ mDevice->NumUpdates = static_cast(clampd( (ALdouble)mSpec.rate/mDevice->Frequency*mDevice->NumUpdates + 0.5, 2.0, 16.0)); period_size = mDevice->UpdateSize * mFrameSize; mAttr.maxlength = -1; mAttr.tlength = period_size * maxu(mDevice->NumUpdates, 2); mAttr.prebuf = 0; mAttr.minreq = period_size; op = pa_stream_set_buffer_attr(mStream, &mAttr, stream_success_callback, mLoop); wait_for_operation(op, mLoop); mDevice->Frequency = mSpec.rate; } pa_stream_set_buffer_attr_callback(mStream, &PulsePlayback::bufferAttrCallbackC, this); bufferAttrCallback(mStream); mDevice->NumUpdates = clampu((mAttr.tlength + mAttr.minreq/2u) / mAttr.minreq, 2u, 16u); mDevice->UpdateSize = mAttr.minreq / mFrameSize; /* HACK: prebuf should be 0 as that's what we set it to. However on some * systems it comes back as non-0, so we have to make sure the device will * write enough audio to start playback. The lack of manual start control * may have unintended consequences, but it's better than not starting at * all. */ if(mAttr.prebuf != 0) { ALuint len{mAttr.prebuf / mFrameSize}; if(len <= mDevice->UpdateSize*mDevice->NumUpdates) ERR("Non-0 prebuf, %u samples (%u bytes), device has %u samples\n", len, mAttr.prebuf, mDevice->UpdateSize*mDevice->NumUpdates); else { ERR("Large prebuf, %u samples (%u bytes), increasing device from %u samples", len, mAttr.prebuf, mDevice->UpdateSize*mDevice->NumUpdates); mDevice->NumUpdates = (len+mDevice->UpdateSize-1) / mDevice->UpdateSize; } } return ALC_TRUE; } ALCboolean PulsePlayback::start() { unique_palock palock{mLoop}; pa_stream_set_write_callback(mStream, &PulsePlayback::streamWriteCallbackC, this); pa_operation *op{pa_stream_cork(mStream, 0, stream_success_callback, mLoop)}; wait_for_operation(op, mLoop); return ALC_TRUE; } void PulsePlayback::stop() { unique_palock palock{mLoop}; pa_stream_set_write_callback(mStream, nullptr, nullptr); pa_operation *op{pa_stream_cork(mStream, 1, stream_success_callback, mLoop)}; wait_for_operation(op, mLoop); } ClockLatency PulsePlayback::getClockLatency() { ClockLatency ret; pa_usec_t latency; int neg, err; { palock_guard _{mLoop}; ret.ClockTime = GetDeviceClockTime(mDevice); err = pa_stream_get_latency(mStream, &latency, &neg); } if(UNLIKELY(err != 0)) { /* FIXME: if err = -PA_ERR_NODATA, it means we were called too soon * after starting the stream and no timing info has been received from * the server yet. Should we wait, possibly stalling the app, or give a * dummy value? Either way, it shouldn't be 0. */ if(err != -PA_ERR_NODATA) ERR("Failed to get stream latency: 0x%x\n", err); latency = 0; neg = 0; } else if(UNLIKELY(neg)) latency = 0; ret.Latency = std::chrono::microseconds{latency}; return ret; } void PulsePlayback::lock() noexcept { pa_threaded_mainloop_lock(mLoop); } void PulsePlayback::unlock() noexcept { pa_threaded_mainloop_unlock(mLoop); } struct PulseCapture final : public BackendBase { PulseCapture(ALCdevice *device) noexcept : BackendBase{device} { } ~PulseCapture() override; static void contextStateCallbackC(pa_context *context, void *pdata); void contextStateCallback(pa_context *context); static void streamStateCallbackC(pa_stream *stream, void *pdata); void streamStateCallback(pa_stream *stream); static void sourceNameCallbackC(pa_context *context, const pa_source_info *info, int eol, void *pdata); void sourceNameCallback(pa_context *context, const pa_source_info *info, int eol); static void streamMovedCallbackC(pa_stream *stream, void *pdata); void streamMovedCallback(pa_stream *stream); ALCenum open(const ALCchar *name) override; ALCboolean start() override; void stop() override; ALCenum captureSamples(ALCvoid *buffer, ALCuint samples) override; ALCuint availableSamples() override; ClockLatency getClockLatency() override; void lock() noexcept override; void unlock() noexcept override; std::string mDeviceName; const void *mCapStore{nullptr}; size_t mCapLen{0u}; size_t mCapRemain{0u}; ALCuint mLastReadable{0u}; pa_buffer_attr mAttr{}; pa_sample_spec mSpec{}; pa_threaded_mainloop *mLoop{nullptr}; pa_stream *mStream{nullptr}; pa_context *mContext{nullptr}; static constexpr inline const char *CurrentPrefix() noexcept { return "PulseCapture::"; } DEF_NEWDEL(PulseCapture) }; PulseCapture::~PulseCapture() { if(!mLoop) return; pulse_close(mLoop, mContext, mStream); mLoop = nullptr; mContext = nullptr; mStream = nullptr; } void PulseCapture::contextStateCallbackC(pa_context *context, void *pdata) { static_cast(pdata)->contextStateCallback(context); } void PulseCapture::contextStateCallback(pa_context *context) { if(pa_context_get_state(context) == PA_CONTEXT_FAILED) { ERR("Received context failure!\n"); aluHandleDisconnect(mDevice, "Capture state failure"); } pa_threaded_mainloop_signal(mLoop, 0); } void PulseCapture::streamStateCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->streamStateCallback(stream); } void PulseCapture::streamStateCallback(pa_stream *stream) { if(pa_stream_get_state(stream) == PA_STREAM_FAILED) { ERR("Received stream failure!\n"); aluHandleDisconnect(mDevice, "Capture stream failure"); } pa_threaded_mainloop_signal(mLoop, 0); } void PulseCapture::sourceNameCallbackC(pa_context *context, const pa_source_info *info, int eol, void *pdata) { static_cast(pdata)->sourceNameCallback(context, info, eol); } void PulseCapture::sourceNameCallback(pa_context* UNUSED(context), const pa_source_info *info, int eol) { if(eol) { pa_threaded_mainloop_signal(mLoop, 0); return; } mDevice->DeviceName = info->description; } void PulseCapture::streamMovedCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->streamMovedCallback(stream); } void PulseCapture::streamMovedCallback(pa_stream *stream) { mDeviceName = pa_stream_get_device_name(stream); TRACE("Stream moved to %s\n", mDeviceName.c_str()); } ALCenum PulseCapture::open(const ALCchar *name) { const char *pulse_name{nullptr}; if(name) { if(CaptureDevices.empty()) probeCaptureDevices(); auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; } ); if(iter == CaptureDevices.cend()) return ALC_INVALID_VALUE; pulse_name = iter->device_name.c_str(); mDevice->DeviceName = iter->name; } std::tie(mLoop, mContext) = pulse_open(&PulseCapture::contextStateCallbackC, this); if(!mLoop) return ALC_INVALID_VALUE; unique_palock palock{mLoop}; switch(mDevice->FmtType) { case DevFmtUByte: mSpec.format = PA_SAMPLE_U8; break; case DevFmtShort: mSpec.format = PA_SAMPLE_S16NE; break; case DevFmtInt: mSpec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: mSpec.format = PA_SAMPLE_FLOAT32NE; break; case DevFmtByte: case DevFmtUShort: case DevFmtUInt: ERR("%s capture samples not supported\n", DevFmtTypeString(mDevice->FmtType)); return ALC_INVALID_VALUE; } const char *mapname{nullptr}; pa_channel_map chanmap; switch(mDevice->FmtChans) { case DevFmtMono: mapname = "mono"; break; case DevFmtStereo: mapname = "front-left,front-right"; break; case DevFmtQuad: mapname = "front-left,front-right,rear-left,rear-right"; break; case DevFmtX51: mapname = "front-left,front-right,front-center,lfe,side-left,side-right"; break; case DevFmtX51Rear: mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right"; break; case DevFmtX61: mapname = "front-left,front-right,front-center,lfe,rear-center,side-left,side-right"; break; case DevFmtX71: mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right,side-left,side-right"; break; case DevFmtAmbi3D: ERR("%s capture samples not supported\n", DevFmtChannelsString(mDevice->FmtChans)); return ALC_INVALID_VALUE; } if(!pa_channel_map_parse(&chanmap, mapname)) { ERR("Failed to build channel map for %s\n", DevFmtChannelsString(mDevice->FmtChans)); return ALC_INVALID_VALUE; } mSpec.rate = mDevice->Frequency; mSpec.channels = mDevice->channelsFromFmt(); if(pa_sample_spec_valid(&mSpec) == 0) { ERR("Invalid sample format\n"); return ALC_INVALID_VALUE; } if(!pa_channel_map_init_auto(&chanmap, mSpec.channels, PA_CHANNEL_MAP_WAVEEX)) { ERR("Couldn't build map for channel count (%d)!\n", mSpec.channels); return ALC_INVALID_VALUE; } ALuint samples{mDevice->UpdateSize * mDevice->NumUpdates}; samples = maxu(samples, 100 * mDevice->Frequency / 1000); mAttr.minreq = -1; mAttr.prebuf = -1; mAttr.maxlength = samples * pa_frame_size(&mSpec); mAttr.tlength = -1; mAttr.fragsize = minu(samples, 50*mDevice->Frequency/1000) * pa_frame_size(&mSpec); pa_stream_flags_t flags{PA_STREAM_START_CORKED|PA_STREAM_ADJUST_LATENCY}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)"); mStream = pulse_connect_stream(pulse_name, mLoop, mContext, flags, &mAttr, &mSpec, &chanmap, BackendType::Capture); if(!mStream) return ALC_INVALID_VALUE; pa_stream_set_moved_callback(mStream, &PulseCapture::streamMovedCallbackC, this); pa_stream_set_state_callback(mStream, &PulseCapture::streamStateCallbackC, this); mDeviceName = pa_stream_get_device_name(mStream); if(mDevice->DeviceName.empty()) { pa_operation *op{pa_context_get_source_info_by_name(mContext, mDeviceName.c_str(), &PulseCapture::sourceNameCallbackC, this)}; wait_for_operation(op, mLoop); } return ALC_NO_ERROR; } ALCboolean PulseCapture::start() { palock_guard _{mLoop}; pa_operation *op{pa_stream_cork(mStream, 0, stream_success_callback, mLoop)}; wait_for_operation(op, mLoop); return ALC_TRUE; } void PulseCapture::stop() { palock_guard _{mLoop}; pa_operation *op{pa_stream_cork(mStream, 1, stream_success_callback, mLoop)}; wait_for_operation(op, mLoop); } ALCenum PulseCapture::captureSamples(ALCvoid *buffer, ALCuint samples) { ALCuint todo{samples * static_cast(pa_frame_size(&mSpec))}; /* Capture is done in fragment-sized chunks, so we loop until we get all * that's available */ mLastReadable -= todo; unique_palock palock{mLoop}; while(todo > 0) { size_t rem{todo}; if(mCapLen == 0) { pa_stream_state_t state{pa_stream_get_state(mStream)}; if(!PA_STREAM_IS_GOOD(state)) { aluHandleDisconnect(mDevice, "Bad capture state: %u", state); return ALC_INVALID_DEVICE; } if(pa_stream_peek(mStream, &mCapStore, &mCapLen) < 0) { ERR("pa_stream_peek() failed: %s\n", pa_strerror(pa_context_errno(mContext))); aluHandleDisconnect(mDevice, "Failed retrieving capture samples: %s", pa_strerror(pa_context_errno(mContext))); return ALC_INVALID_DEVICE; } mCapRemain = mCapLen; } rem = minz(rem, mCapRemain); memcpy(buffer, mCapStore, rem); buffer = (ALbyte*)buffer + rem; todo -= rem; mCapStore = (ALbyte*)mCapStore + rem; mCapRemain -= rem; if(mCapRemain == 0) { pa_stream_drop(mStream); mCapLen = 0; } } palock.unlock(); if(todo > 0) memset(buffer, ((mDevice->FmtType==DevFmtUByte) ? 0x80 : 0), todo); return ALC_NO_ERROR; } ALCuint PulseCapture::availableSamples() { size_t readable{mCapRemain}; if(mDevice->Connected.load(std::memory_order_acquire)) { palock_guard _{mLoop}; size_t got{pa_stream_readable_size(mStream)}; if(static_cast(got) < 0) { ERR("pa_stream_readable_size() failed: %s\n", pa_strerror(got)); aluHandleDisconnect(mDevice, "Failed getting readable size: %s", pa_strerror(got)); } else if(got > mCapLen) readable += got - mCapLen; } if(mLastReadable < readable) mLastReadable = readable; return mLastReadable / pa_frame_size(&mSpec); } ClockLatency PulseCapture::getClockLatency() { ClockLatency ret; pa_usec_t latency; int neg, err; { palock_guard _{mLoop}; ret.ClockTime = GetDeviceClockTime(mDevice); err = pa_stream_get_latency(mStream, &latency, &neg); } if(UNLIKELY(err != 0)) { ERR("Failed to get stream latency: 0x%x\n", err); latency = 0; neg = 0; } else if(UNLIKELY(neg)) latency = 0; ret.Latency = std::chrono::microseconds{latency}; return ret; } void PulseCapture::lock() noexcept { pa_threaded_mainloop_lock(mLoop); } void PulseCapture::unlock() noexcept { pa_threaded_mainloop_unlock(mLoop); } } // namespace bool PulseBackendFactory::init() { bool ret{false}; if(pulse_load()) { pulse_ctx_flags = PA_CONTEXT_NOFLAGS; if(!GetConfigValueBool(nullptr, "pulse", "spawn-server", 1)) pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN; pa_threaded_mainloop *loop{pa_threaded_mainloop_new()}; if(loop && pa_threaded_mainloop_start(loop) >= 0) { unique_palock palock{loop}; pa_context *context{connect_context(loop, AL_TRUE)}; if(context) { ret = true; /* Some libraries (Phonon, Qt) set some pulseaudio properties * through environment variables, which causes all streams in * the process to inherit them. This attempts to filter those * properties out by setting them to 0-length data. */ prop_filter = pa_proplist_new(); pa_proplist_set(prop_filter, PA_PROP_MEDIA_ROLE, nullptr, 0); pa_proplist_set(prop_filter, "phonon.streamid", nullptr, 0); pa_context_disconnect(context); pa_context_unref(context); } palock.unlock(); pa_threaded_mainloop_stop(loop); } if(loop) pa_threaded_mainloop_free(loop); } return ret; } void PulseBackendFactory::deinit() { PlaybackDevices.clear(); CaptureDevices.clear(); if(prop_filter) pa_proplist_free(prop_filter); prop_filter = nullptr; /* PulseAudio doesn't like being CloseLib'd sometimes */ } bool PulseBackendFactory::querySupport(BackendType type) { return type == BackendType::Playback || type == BackendType::Capture; } void PulseBackendFactory::probe(DevProbe type, std::string *outnames) { auto add_device = [outnames](const DevMap &entry) -> void { /* +1 to also append the null char (to ensure a null-separated list and * double-null terminated list). */ outnames->append(entry.name.c_str(), entry.name.length()+1); }; switch(type) { case ALL_DEVICE_PROBE: probePlaybackDevices(); std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device); break; case CAPTURE_DEVICE_PROBE: probeCaptureDevices(); std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device); break; } } BackendPtr PulseBackendFactory::createBackend(ALCdevice *device, BackendType type) { if(type == BackendType::Playback) return BackendPtr{new PulsePlayback{device}}; if(type == BackendType::Capture) return BackendPtr{new PulseCapture{device}}; return nullptr; } BackendFactory &PulseBackendFactory::getFactory() { static PulseBackendFactory factory{}; return factory; }