/** * OpenAL cross platform audio library * Copyright (C) 2009 by Konstantinos Natsakis * Copyright (C) 2010 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "backends/pulseaudio.h" #include #include #include #include #include #include #include #include "alMain.h" #include "alu.h" #include "alconfig.h" #include "compat.h" #include #if PA_API_VERSION == 12 namespace { #ifdef HAVE_DYNLOAD void *pa_handle; #define MAKE_FUNC(x) decltype(x) * p##x MAKE_FUNC(pa_context_unref); MAKE_FUNC(pa_sample_spec_valid); MAKE_FUNC(pa_frame_size); MAKE_FUNC(pa_stream_drop); MAKE_FUNC(pa_strerror); MAKE_FUNC(pa_context_get_state); MAKE_FUNC(pa_stream_get_state); MAKE_FUNC(pa_threaded_mainloop_signal); MAKE_FUNC(pa_stream_peek); MAKE_FUNC(pa_threaded_mainloop_wait); MAKE_FUNC(pa_threaded_mainloop_unlock); MAKE_FUNC(pa_threaded_mainloop_in_thread); MAKE_FUNC(pa_context_new); MAKE_FUNC(pa_threaded_mainloop_stop); MAKE_FUNC(pa_context_disconnect); MAKE_FUNC(pa_threaded_mainloop_start); MAKE_FUNC(pa_threaded_mainloop_get_api); MAKE_FUNC(pa_context_set_state_callback); MAKE_FUNC(pa_stream_write); MAKE_FUNC(pa_xfree); MAKE_FUNC(pa_stream_connect_record); MAKE_FUNC(pa_stream_connect_playback); MAKE_FUNC(pa_stream_readable_size); MAKE_FUNC(pa_stream_writable_size); MAKE_FUNC(pa_stream_is_corked); MAKE_FUNC(pa_stream_cork); MAKE_FUNC(pa_stream_is_suspended); MAKE_FUNC(pa_stream_get_device_name); MAKE_FUNC(pa_stream_get_latency); MAKE_FUNC(pa_path_get_filename); MAKE_FUNC(pa_get_binary_name); MAKE_FUNC(pa_threaded_mainloop_free); MAKE_FUNC(pa_context_errno); MAKE_FUNC(pa_xmalloc); MAKE_FUNC(pa_stream_unref); MAKE_FUNC(pa_threaded_mainloop_accept); MAKE_FUNC(pa_stream_set_write_callback); MAKE_FUNC(pa_threaded_mainloop_new); MAKE_FUNC(pa_context_connect); MAKE_FUNC(pa_stream_set_buffer_attr); MAKE_FUNC(pa_stream_get_buffer_attr); MAKE_FUNC(pa_stream_get_sample_spec); MAKE_FUNC(pa_stream_get_time); MAKE_FUNC(pa_stream_set_read_callback); MAKE_FUNC(pa_stream_set_state_callback); MAKE_FUNC(pa_stream_set_moved_callback); MAKE_FUNC(pa_stream_set_underflow_callback); MAKE_FUNC(pa_stream_new_with_proplist); MAKE_FUNC(pa_stream_disconnect); MAKE_FUNC(pa_threaded_mainloop_lock); MAKE_FUNC(pa_channel_map_init_auto); MAKE_FUNC(pa_channel_map_parse); MAKE_FUNC(pa_channel_map_snprint); MAKE_FUNC(pa_channel_map_equal); MAKE_FUNC(pa_context_get_server_info); MAKE_FUNC(pa_context_get_sink_info_by_name); MAKE_FUNC(pa_context_get_sink_info_list); MAKE_FUNC(pa_context_get_source_info_by_name); MAKE_FUNC(pa_context_get_source_info_list); MAKE_FUNC(pa_operation_get_state); MAKE_FUNC(pa_operation_unref); MAKE_FUNC(pa_proplist_new); MAKE_FUNC(pa_proplist_free); MAKE_FUNC(pa_proplist_set); MAKE_FUNC(pa_channel_map_superset); MAKE_FUNC(pa_stream_set_buffer_attr_callback); MAKE_FUNC(pa_stream_begin_write); #undef MAKE_FUNC #ifndef IN_IDE_PARSER #define pa_context_unref ppa_context_unref #define pa_sample_spec_valid ppa_sample_spec_valid #define pa_frame_size ppa_frame_size #define pa_stream_drop ppa_stream_drop #define pa_strerror ppa_strerror #define pa_context_get_state ppa_context_get_state #define pa_stream_get_state ppa_stream_get_state #define pa_threaded_mainloop_signal ppa_threaded_mainloop_signal #define pa_stream_peek ppa_stream_peek #define pa_threaded_mainloop_wait ppa_threaded_mainloop_wait #define pa_threaded_mainloop_unlock ppa_threaded_mainloop_unlock #define pa_threaded_mainloop_in_thread ppa_threaded_mainloop_in_thread #define pa_context_new ppa_context_new #define pa_threaded_mainloop_stop ppa_threaded_mainloop_stop #define pa_context_disconnect ppa_context_disconnect #define pa_threaded_mainloop_start ppa_threaded_mainloop_start #define pa_threaded_mainloop_get_api ppa_threaded_mainloop_get_api #define pa_context_set_state_callback ppa_context_set_state_callback #define pa_stream_write ppa_stream_write #define pa_xfree ppa_xfree #define pa_stream_connect_record ppa_stream_connect_record #define pa_stream_connect_playback ppa_stream_connect_playback #define pa_stream_readable_size ppa_stream_readable_size #define pa_stream_writable_size ppa_stream_writable_size #define pa_stream_is_corked ppa_stream_is_corked #define pa_stream_cork ppa_stream_cork #define pa_stream_is_suspended ppa_stream_is_suspended #define pa_stream_get_device_name ppa_stream_get_device_name #define pa_stream_get_latency ppa_stream_get_latency #define pa_path_get_filename ppa_path_get_filename #define pa_get_binary_name ppa_get_binary_name #define pa_threaded_mainloop_free ppa_threaded_mainloop_free #define pa_context_errno ppa_context_errno #define pa_xmalloc ppa_xmalloc #define pa_stream_unref ppa_stream_unref #define pa_threaded_mainloop_accept ppa_threaded_mainloop_accept #define pa_stream_set_write_callback ppa_stream_set_write_callback #define pa_threaded_mainloop_new ppa_threaded_mainloop_new #define pa_context_connect ppa_context_connect #define pa_stream_set_buffer_attr ppa_stream_set_buffer_attr #define pa_stream_get_buffer_attr ppa_stream_get_buffer_attr #define pa_stream_get_sample_spec ppa_stream_get_sample_spec #define pa_stream_get_time ppa_stream_get_time #define pa_stream_set_read_callback ppa_stream_set_read_callback #define pa_stream_set_state_callback ppa_stream_set_state_callback #define pa_stream_set_moved_callback ppa_stream_set_moved_callback #define pa_stream_set_underflow_callback ppa_stream_set_underflow_callback #define pa_stream_new_with_proplist ppa_stream_new_with_proplist #define pa_stream_disconnect ppa_stream_disconnect #define pa_threaded_mainloop_lock ppa_threaded_mainloop_lock #define pa_channel_map_init_auto ppa_channel_map_init_auto #define pa_channel_map_parse ppa_channel_map_parse #define pa_channel_map_snprint ppa_channel_map_snprint #define pa_channel_map_equal ppa_channel_map_equal #define pa_context_get_server_info ppa_context_get_server_info #define pa_context_get_sink_info_by_name ppa_context_get_sink_info_by_name #define pa_context_get_sink_info_list ppa_context_get_sink_info_list #define pa_context_get_source_info_by_name ppa_context_get_source_info_by_name #define pa_context_get_source_info_list ppa_context_get_source_info_list #define pa_operation_get_state ppa_operation_get_state #define pa_operation_unref ppa_operation_unref #define pa_proplist_new ppa_proplist_new #define pa_proplist_free ppa_proplist_free #define pa_proplist_set ppa_proplist_set #define pa_channel_map_superset ppa_channel_map_superset #define pa_stream_set_buffer_attr_callback ppa_stream_set_buffer_attr_callback #define pa_stream_begin_write ppa_stream_begin_write #endif /* IN_IDE_PARSER */ #endif ALCboolean pulse_load(void) { ALCboolean ret{ALC_TRUE}; #ifdef HAVE_DYNLOAD if(!pa_handle) { std::string missing_funcs; #ifdef _WIN32 #define PALIB "libpulse-0.dll" #elif defined(__APPLE__) && defined(__MACH__) #define PALIB "libpulse.0.dylib" #else #define PALIB "libpulse.so.0" #endif pa_handle = LoadLib(PALIB); if(!pa_handle) { WARN("Failed to load %s\n", PALIB); return ALC_FALSE; } #define LOAD_FUNC(x) do { \ p##x = reinterpret_cast(GetSymbol(pa_handle, #x)); \ if(!(p##x)) { \ ret = ALC_FALSE; \ missing_funcs += "\n" #x; \ } \ } while(0) LOAD_FUNC(pa_context_unref); LOAD_FUNC(pa_sample_spec_valid); LOAD_FUNC(pa_stream_drop); LOAD_FUNC(pa_frame_size); LOAD_FUNC(pa_strerror); LOAD_FUNC(pa_context_get_state); LOAD_FUNC(pa_stream_get_state); LOAD_FUNC(pa_threaded_mainloop_signal); LOAD_FUNC(pa_stream_peek); LOAD_FUNC(pa_threaded_mainloop_wait); LOAD_FUNC(pa_threaded_mainloop_unlock); LOAD_FUNC(pa_threaded_mainloop_in_thread); LOAD_FUNC(pa_context_new); LOAD_FUNC(pa_threaded_mainloop_stop); LOAD_FUNC(pa_context_disconnect); LOAD_FUNC(pa_threaded_mainloop_start); LOAD_FUNC(pa_threaded_mainloop_get_api); LOAD_FUNC(pa_context_set_state_callback); LOAD_FUNC(pa_stream_write); LOAD_FUNC(pa_xfree); LOAD_FUNC(pa_stream_connect_record); LOAD_FUNC(pa_stream_connect_playback); LOAD_FUNC(pa_stream_readable_size); LOAD_FUNC(pa_stream_writable_size); LOAD_FUNC(pa_stream_is_corked); LOAD_FUNC(pa_stream_cork); LOAD_FUNC(pa_stream_is_suspended); LOAD_FUNC(pa_stream_get_device_name); LOAD_FUNC(pa_stream_get_latency); LOAD_FUNC(pa_path_get_filename); LOAD_FUNC(pa_get_binary_name); LOAD_FUNC(pa_threaded_mainloop_free); LOAD_FUNC(pa_context_errno); LOAD_FUNC(pa_xmalloc); LOAD_FUNC(pa_stream_unref); LOAD_FUNC(pa_threaded_mainloop_accept); LOAD_FUNC(pa_stream_set_write_callback); LOAD_FUNC(pa_threaded_mainloop_new); LOAD_FUNC(pa_context_connect); LOAD_FUNC(pa_stream_set_buffer_attr); LOAD_FUNC(pa_stream_get_buffer_attr); LOAD_FUNC(pa_stream_get_sample_spec); LOAD_FUNC(pa_stream_get_time); LOAD_FUNC(pa_stream_set_read_callback); LOAD_FUNC(pa_stream_set_state_callback); LOAD_FUNC(pa_stream_set_moved_callback); LOAD_FUNC(pa_stream_set_underflow_callback); LOAD_FUNC(pa_stream_new_with_proplist); LOAD_FUNC(pa_stream_disconnect); LOAD_FUNC(pa_threaded_mainloop_lock); LOAD_FUNC(pa_channel_map_init_auto); LOAD_FUNC(pa_channel_map_parse); LOAD_FUNC(pa_channel_map_snprint); LOAD_FUNC(pa_channel_map_equal); LOAD_FUNC(pa_context_get_server_info); LOAD_FUNC(pa_context_get_sink_info_by_name); LOAD_FUNC(pa_context_get_sink_info_list); LOAD_FUNC(pa_context_get_source_info_by_name); LOAD_FUNC(pa_context_get_source_info_list); LOAD_FUNC(pa_operation_get_state); LOAD_FUNC(pa_operation_unref); LOAD_FUNC(pa_proplist_new); LOAD_FUNC(pa_proplist_free); LOAD_FUNC(pa_proplist_set); LOAD_FUNC(pa_channel_map_superset); LOAD_FUNC(pa_stream_set_buffer_attr_callback); LOAD_FUNC(pa_stream_begin_write); #undef LOAD_FUNC if(ret == ALC_FALSE) { WARN("Missing expected functions:%s\n", missing_funcs.c_str()); CloseLib(pa_handle); pa_handle = nullptr; } } #endif /* HAVE_DYNLOAD */ return ret; } /* *grumble* Don't use enums for bitflags. */ inline pa_stream_flags_t operator|(pa_stream_flags_t lhs, pa_stream_flags_t rhs) { return pa_stream_flags_t(int(lhs) | int(rhs)); } inline pa_stream_flags_t operator|=(pa_stream_flags_t &lhs, pa_stream_flags_t rhs) { lhs = pa_stream_flags_t(int(lhs) | int(rhs)); return lhs; } inline pa_context_flags_t operator|=(pa_context_flags_t &lhs, pa_context_flags_t rhs) { lhs = pa_context_flags_t(int(lhs) | int(rhs)); return lhs; } class palock_guard { pa_threaded_mainloop *mLoop; public: explicit palock_guard(pa_threaded_mainloop *loop) : mLoop(loop) { pa_threaded_mainloop_lock(mLoop); } ~palock_guard() { pa_threaded_mainloop_unlock(mLoop); } palock_guard(const palock_guard&) = delete; palock_guard& operator=(const palock_guard&) = delete; }; class unique_palock { pa_threaded_mainloop *mLoop{nullptr}; bool mLocked{false}; public: unique_palock() noexcept = default; explicit unique_palock(pa_threaded_mainloop *loop) : mLoop(loop) { pa_threaded_mainloop_lock(mLoop); mLocked = true; } unique_palock(unique_palock&& rhs) : mLoop(rhs.mLoop), mLocked(rhs.mLocked) { rhs.mLoop = nullptr; rhs.mLocked = false; } ~unique_palock() { if(mLocked) pa_threaded_mainloop_unlock(mLoop); } unique_palock& operator=(const unique_palock&) = delete; unique_palock& operator=(unique_palock&& rhs) { if(mLocked) pa_threaded_mainloop_unlock(mLoop); mLoop = rhs.mLoop; rhs.mLoop = nullptr; mLocked = rhs.mLocked; rhs.mLocked = false; return *this; } void lock() { pa_threaded_mainloop_lock(mLoop); mLocked = true; } void unlock() { mLocked = false; pa_threaded_mainloop_unlock(mLoop); } }; /* Global flags and properties */ pa_context_flags_t pulse_ctx_flags; pa_proplist *prop_filter; /* PulseAudio Event Callbacks */ void context_state_callback(pa_context *context, void *pdata) { auto loop = reinterpret_cast(pdata); pa_context_state_t state{pa_context_get_state(context)}; if(state == PA_CONTEXT_READY || !PA_CONTEXT_IS_GOOD(state)) pa_threaded_mainloop_signal(loop, 0); } void stream_state_callback(pa_stream *stream, void *pdata) { auto loop = reinterpret_cast(pdata); pa_stream_state_t state{pa_stream_get_state(stream)}; if(state == PA_STREAM_READY || !PA_STREAM_IS_GOOD(state)) pa_threaded_mainloop_signal(loop, 0); } void stream_success_callback(pa_stream *UNUSED(stream), int UNUSED(success), void *pdata) { auto loop = reinterpret_cast(pdata); pa_threaded_mainloop_signal(loop, 0); } void wait_for_operation(pa_operation *op, pa_threaded_mainloop *loop) { if(op) { while(pa_operation_get_state(op) == PA_OPERATION_RUNNING) pa_threaded_mainloop_wait(loop); pa_operation_unref(op); } } pa_context *connect_context(pa_threaded_mainloop *loop, ALboolean silent) { const char *name{"OpenAL Soft"}; PathNamePair binname = GetProcBinary(); if(!binname.fname.empty()) name = binname.fname.c_str(); pa_context *context{pa_context_new(pa_threaded_mainloop_get_api(loop), name)}; if(!context) { ERR("pa_context_new() failed\n"); return nullptr; } pa_context_set_state_callback(context, context_state_callback, loop); int err; if((err=pa_context_connect(context, nullptr, pulse_ctx_flags, nullptr)) >= 0) { pa_context_state_t state; while((state=pa_context_get_state(context)) != PA_CONTEXT_READY) { if(!PA_CONTEXT_IS_GOOD(state)) { err = pa_context_errno(context); if(err > 0) err = -err; break; } pa_threaded_mainloop_wait(loop); } } pa_context_set_state_callback(context, nullptr, nullptr); if(err < 0) { if(!silent) ERR("Context did not connect: %s\n", pa_strerror(err)); pa_context_unref(context); context = nullptr; } return context; } using MainloopContextPair = std::pair; MainloopContextPair pulse_open(void(*state_cb)(pa_context*,void*), void *ptr) { pa_threaded_mainloop *loop{pa_threaded_mainloop_new()}; if(UNLIKELY(!loop)) { ERR("pa_threaded_mainloop_new() failed!\n"); return {nullptr, nullptr}; } if(UNLIKELY(pa_threaded_mainloop_start(loop) < 0)) { ERR("pa_threaded_mainloop_start() failed\n"); pa_threaded_mainloop_free(loop); return {nullptr, nullptr}; } unique_palock palock{loop}; pa_context *context{connect_context(loop, AL_FALSE)}; if(UNLIKELY(!context)) { palock = unique_palock{}; pa_threaded_mainloop_stop(loop); pa_threaded_mainloop_free(loop); return {nullptr, nullptr}; } pa_context_set_state_callback(context, state_cb, ptr); return {loop, context}; } void pulse_close(pa_threaded_mainloop *loop, pa_context *context, pa_stream *stream) { { palock_guard _{loop}; if(stream) { pa_stream_set_state_callback(stream, nullptr, nullptr); pa_stream_set_moved_callback(stream, nullptr, nullptr); pa_stream_set_write_callback(stream, nullptr, nullptr); pa_stream_set_buffer_attr_callback(stream, nullptr, nullptr); pa_stream_disconnect(stream); pa_stream_unref(stream); } pa_context_disconnect(context); pa_context_unref(context); } pa_threaded_mainloop_stop(loop); pa_threaded_mainloop_free(loop); } struct DevMap { std::string name; std::string device_name; template DevMap(StrT0&& name_, StrT1&& devname_) : name{std::forward(name_)}, device_name{std::forward(devname_)} { } }; bool checkName(const std::vector &list, const std::string &name) { return std::find_if(list.cbegin(), list.cend(), [&name](const DevMap &entry) -> bool { return entry.name == name; } ) != list.cend(); } std::vector PlaybackDevices; std::vector CaptureDevices; struct PulsePlayback final : public ALCbackend { std::string device_name; pa_buffer_attr attr; pa_sample_spec spec; pa_threaded_mainloop *loop{nullptr}; pa_stream *stream{nullptr}; pa_context *context{nullptr}; std::atomic killNow{ALC_TRUE}; std::thread thread; }; void PulsePlayback_deviceCallback(pa_context *context, const pa_sink_info *info, int eol, void *pdata); void PulsePlayback_probeDevices(void); void PulsePlayback_bufferAttrCallback(pa_stream *stream, void *pdata); void PulsePlayback_contextStateCallback(pa_context *context, void *pdata); void PulsePlayback_streamStateCallback(pa_stream *stream, void *pdata); void PulsePlayback_streamWriteCallback(pa_stream *p, size_t nbytes, void *userdata); void PulsePlayback_sinkInfoCallback(pa_context *context, const pa_sink_info *info, int eol, void *pdata); void PulsePlayback_sinkNameCallback(pa_context *context, const pa_sink_info *info, int eol, void *pdata); void PulsePlayback_streamMovedCallback(pa_stream *stream, void *pdata); pa_stream *PulsePlayback_connectStream(const char *device_name, pa_threaded_mainloop *loop, pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap); int PulsePlayback_mixerProc(PulsePlayback *self); void PulsePlayback_Construct(PulsePlayback *self, ALCdevice *device); void PulsePlayback_Destruct(PulsePlayback *self); ALCenum PulsePlayback_open(PulsePlayback *self, const ALCchar *name); ALCboolean PulsePlayback_reset(PulsePlayback *self); ALCboolean PulsePlayback_start(PulsePlayback *self); void PulsePlayback_stop(PulsePlayback *self); DECLARE_FORWARD2(PulsePlayback, ALCbackend, ALCenum, captureSamples, ALCvoid*, ALCuint) DECLARE_FORWARD(PulsePlayback, ALCbackend, ALCuint, availableSamples) ClockLatency PulsePlayback_getClockLatency(PulsePlayback *self); void PulsePlayback_lock(PulsePlayback *self); void PulsePlayback_unlock(PulsePlayback *self); DECLARE_DEFAULT_ALLOCATORS(PulsePlayback) DEFINE_ALCBACKEND_VTABLE(PulsePlayback); void PulsePlayback_Construct(PulsePlayback *self, ALCdevice *device) { new (self) PulsePlayback(); ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(PulsePlayback, ALCbackend, self); } void PulsePlayback_Destruct(PulsePlayback *self) { if(self->loop) { pulse_close(self->loop, self->context, self->stream); self->loop = nullptr; self->context = nullptr; self->stream = nullptr; } ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); self->~PulsePlayback(); } void PulsePlayback_deviceCallback(pa_context *UNUSED(context), const pa_sink_info *info, int eol, void *pdata) { auto loop = reinterpret_cast(pdata); if(eol) { pa_threaded_mainloop_signal(loop, 0); return; } /* Skip this device is if it's already in the list. */ if(std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [info](const DevMap &entry) -> bool { return entry.device_name == info->name; } ) != PlaybackDevices.cend()) return; /* Make sure the display name (description) is unique. Append a number * counter as needed. */ int count{1}; std::string newname{info->description}; while(checkName(PlaybackDevices, newname)) { newname = info->description; newname += " #"; newname += std::to_string(++count); } PlaybackDevices.emplace_back(std::move(newname), info->name); DevMap &newentry = PlaybackDevices.back(); TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str()); } void PulsePlayback_probeDevices(void) { PlaybackDevices.clear(); pa_threaded_mainloop *loop{pa_threaded_mainloop_new()}; if(loop && pa_threaded_mainloop_start(loop) >= 0) { unique_palock palock{loop}; pa_context *context{connect_context(loop, AL_FALSE)}; if(context) { pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS | PA_STREAM_DONT_MOVE}; pa_sample_spec spec; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 2; pa_stream *stream{PulsePlayback_connectStream(nullptr, loop, context, flags, nullptr, &spec, nullptr )}; if(stream) { pa_operation *op{pa_context_get_sink_info_by_name(context, pa_stream_get_device_name(stream), PulsePlayback_deviceCallback, loop )}; wait_for_operation(op, loop); pa_stream_disconnect(stream); pa_stream_unref(stream); stream = nullptr; } pa_operation *op{pa_context_get_sink_info_list(context, PulsePlayback_deviceCallback, loop )}; wait_for_operation(op, loop); pa_context_disconnect(context); pa_context_unref(context); } palock = unique_palock{}; pa_threaded_mainloop_stop(loop); } if(loop) pa_threaded_mainloop_free(loop); } void PulsePlayback_bufferAttrCallback(pa_stream *stream, void *pdata) { auto self = reinterpret_cast(pdata); self->attr = *pa_stream_get_buffer_attr(stream); TRACE("minreq=%d, tlength=%d, prebuf=%d\n", self->attr.minreq, self->attr.tlength, self->attr.prebuf); /* FIXME: Update the device's UpdateSize (and/or NumUpdates) using the new * buffer attributes? Changing UpdateSize will change the ALC_REFRESH * property, which probably shouldn't change between device resets. But * leaving it alone means ALC_REFRESH will be off. */ } void PulsePlayback_contextStateCallback(pa_context *context, void *pdata) { auto self = reinterpret_cast(pdata); if(pa_context_get_state(context) == PA_CONTEXT_FAILED) { ERR("Received context failure!\n"); aluHandleDisconnect(STATIC_CAST(ALCbackend,self)->mDevice, "Playback state failure"); } pa_threaded_mainloop_signal(self->loop, 0); } void PulsePlayback_streamStateCallback(pa_stream *stream, void *pdata) { auto self = reinterpret_cast(pdata); if(pa_stream_get_state(stream) == PA_STREAM_FAILED) { ERR("Received stream failure!\n"); aluHandleDisconnect(STATIC_CAST(ALCbackend,self)->mDevice, "Playback stream failure"); } pa_threaded_mainloop_signal(self->loop, 0); } void PulsePlayback_streamWriteCallback(pa_stream* UNUSED(p), size_t UNUSED(nbytes), void *pdata) { auto self = reinterpret_cast(pdata); pa_threaded_mainloop_signal(self->loop, 0); } void PulsePlayback_sinkInfoCallback(pa_context *UNUSED(context), const pa_sink_info *info, int eol, void *pdata) { struct ChannelMap { DevFmtChannels chans; pa_channel_map map; }; static constexpr std::array chanmaps{{ { DevFmtX71, { 8, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } } }, { DevFmtX61, { 7, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_CENTER, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } } }, { DevFmtX51, { 6, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } } }, { DevFmtX51Rear, { 6, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT } } }, { DevFmtQuad, { 4, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT } } }, { DevFmtStereo, { 2, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT } } }, { DevFmtMono, { 1, {PA_CHANNEL_POSITION_MONO} } } }}; auto self = reinterpret_cast(pdata); if(eol) { pa_threaded_mainloop_signal(self->loop, 0); return; } ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; auto chanmap = std::find_if(chanmaps.cbegin(), chanmaps.cend(), [info](const ChannelMap &chanmap) -> bool { return pa_channel_map_superset(&info->channel_map, &chanmap.map); } ); if(chanmap != chanmaps.cend()) { if(!(device->Flags&DEVICE_CHANNELS_REQUEST)) device->FmtChans = chanmap->chans; } else { char chanmap_str[PA_CHANNEL_MAP_SNPRINT_MAX]{}; pa_channel_map_snprint(chanmap_str, sizeof(chanmap_str), &info->channel_map); WARN("Failed to find format for channel map:\n %s\n", chanmap_str); } if(info->active_port) TRACE("Active port: %s (%s)\n", info->active_port->name, info->active_port->description); device->IsHeadphones = (info->active_port && strcmp(info->active_port->name, "analog-output-headphones") == 0 && device->FmtChans == DevFmtStereo); } void PulsePlayback_sinkNameCallback(pa_context *UNUSED(context), const pa_sink_info *info, int eol, void *pdata) { auto self = reinterpret_cast(pdata); if(eol) { pa_threaded_mainloop_signal(self->loop, 0); return; } ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; al_free(device->DeviceName); device->DeviceName = alstrdup(info->description); } void PulsePlayback_streamMovedCallback(pa_stream *stream, void *pdata) { auto self = reinterpret_cast(pdata); self->device_name = pa_stream_get_device_name(stream); TRACE("Stream moved to %s\n", self->device_name.c_str()); } pa_stream *PulsePlayback_connectStream(const char *device_name, pa_threaded_mainloop *loop, pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap) { if(!device_name) { device_name = getenv("ALSOFT_PULSE_DEFAULT"); if(device_name && !device_name[0]) device_name = nullptr; } pa_stream *stream{pa_stream_new_with_proplist(context, "Playback Stream", spec, chanmap, prop_filter )}; if(!stream) { ERR("pa_stream_new_with_proplist() failed: %s\n", pa_strerror(pa_context_errno(context))); return nullptr; } pa_stream_set_state_callback(stream, stream_state_callback, loop); if(pa_stream_connect_playback(stream, device_name, attr, flags, nullptr, nullptr) < 0) { ERR("Stream did not connect: %s\n", pa_strerror(pa_context_errno(context))); pa_stream_unref(stream); return nullptr; } pa_stream_state_t state; while((state=pa_stream_get_state(stream)) != PA_STREAM_READY) { if(!PA_STREAM_IS_GOOD(state)) { ERR("Stream did not get ready: %s\n", pa_strerror(pa_context_errno(context))); pa_stream_unref(stream); return nullptr; } pa_threaded_mainloop_wait(loop); } pa_stream_set_state_callback(stream, nullptr, nullptr); return stream; } int PulsePlayback_mixerProc(PulsePlayback *self) { ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; SetRTPriority(); althrd_setname(MIXER_THREAD_NAME); unique_palock palock{self->loop}; size_t frame_size{pa_frame_size(&self->spec)}; while(!self->killNow.load(std::memory_order_acquire) && ATOMIC_LOAD(&device->Connected, almemory_order_acquire)) { ssize_t len{static_cast(pa_stream_writable_size(self->stream))}; if(UNLIKELY(len < 0)) { ERR("Failed to get writable size: %ld", (long)len); aluHandleDisconnect(device, "Failed to get writable size: %ld", (long)len); break; } /* Make sure we're going to write at least 2 'periods' (minreqs), in * case the server increased it since starting playback. Also round up * the number of writable periods if it's not an integer count. */ ALint buffer_size{static_cast(self->attr.minreq) * maxi( (self->attr.tlength + self->attr.minreq/2) / self->attr.minreq, 2 )}; /* NOTE: This assumes pa_stream_writable_size returns between 0 and * tlength, else there will be more latency than intended. */ len = buffer_size - maxi((ssize_t)self->attr.tlength - len, 0); if(len < self->attr.minreq) { if(pa_stream_is_corked(self->stream)) { pa_operation *op{pa_stream_cork(self->stream, 0, nullptr, nullptr)}; if(op) pa_operation_unref(op); } pa_threaded_mainloop_wait(self->loop); continue; } len -= len%self->attr.minreq; len -= len%frame_size; void *buf{pa_xmalloc(len)}; aluMixData(device, buf, len/frame_size); int ret{pa_stream_write(self->stream, buf, len, pa_xfree, 0, PA_SEEK_RELATIVE)}; if(UNLIKELY(ret != PA_OK)) ERR("Failed to write to stream: %d, %s\n", ret, pa_strerror(ret)); } return 0; } ALCenum PulsePlayback_open(PulsePlayback *self, const ALCchar *name) { const char *pulse_name{nullptr}; const char *dev_name{nullptr}; if(name) { if(PlaybackDevices.empty()) PulsePlayback_probeDevices(); auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; } ); if(iter == PlaybackDevices.cend()) return ALC_INVALID_VALUE; pulse_name = iter->device_name.c_str(); dev_name = iter->name.c_str(); } std::tie(self->loop, self->context) = pulse_open(PulsePlayback_contextStateCallback, self); if(!self->loop) return ALC_INVALID_VALUE; unique_palock palock{self->loop}; pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; pa_sample_spec spec{}; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 2; TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)"); self->stream = PulsePlayback_connectStream(pulse_name, self->loop, self->context, flags, nullptr, &spec, nullptr); if(!self->stream) { palock = unique_palock{}; pulse_close(self->loop, self->context, self->stream); self->loop = nullptr; self->context = nullptr; return ALC_INVALID_VALUE; } pa_stream_set_moved_callback(self->stream, PulsePlayback_streamMovedCallback, self); self->device_name = pa_stream_get_device_name(self->stream); if(!dev_name) { pa_operation *op{pa_context_get_sink_info_by_name(self->context, self->device_name.c_str(), PulsePlayback_sinkNameCallback, self )}; wait_for_operation(op, self->loop); } else { ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; al_free(device->DeviceName); device->DeviceName = alstrdup(dev_name); } return ALC_NO_ERROR; } ALCboolean PulsePlayback_reset(PulsePlayback *self) { unique_palock palock{self->loop}; if(self->stream) { pa_stream_set_state_callback(self->stream, nullptr, nullptr); pa_stream_set_moved_callback(self->stream, nullptr, nullptr); pa_stream_set_write_callback(self->stream, nullptr, nullptr); pa_stream_set_buffer_attr_callback(self->stream, nullptr, nullptr); pa_stream_disconnect(self->stream); pa_stream_unref(self->stream); self->stream = nullptr; } pa_operation *op{pa_context_get_sink_info_by_name(self->context, self->device_name.c_str(), PulsePlayback_sinkInfoCallback, self )}; wait_for_operation(op, self->loop); ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_ADJUST_LATENCY | PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_AUTO_TIMING_UPDATE}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; if(GetConfigValueBool(device->DeviceName, "pulse", "fix-rate", 0) || !(device->Flags&DEVICE_FREQUENCY_REQUEST)) flags |= PA_STREAM_FIX_RATE; switch(device->FmtType) { case DevFmtByte: device->FmtType = DevFmtUByte; /* fall-through */ case DevFmtUByte: self->spec.format = PA_SAMPLE_U8; break; case DevFmtUShort: device->FmtType = DevFmtShort; /* fall-through */ case DevFmtShort: self->spec.format = PA_SAMPLE_S16NE; break; case DevFmtUInt: device->FmtType = DevFmtInt; /* fall-through */ case DevFmtInt: self->spec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: self->spec.format = PA_SAMPLE_FLOAT32NE; break; } self->spec.rate = device->Frequency; self->spec.channels = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder); if(pa_sample_spec_valid(&self->spec) == 0) { ERR("Invalid sample format\n"); return ALC_FALSE; } const char *mapname{nullptr}; pa_channel_map chanmap; switch(device->FmtChans) { case DevFmtMono: mapname = "mono"; break; case DevFmtAmbi3D: device->FmtChans = DevFmtStereo; /*fall-through*/ case DevFmtStereo: mapname = "front-left,front-right"; break; case DevFmtQuad: mapname = "front-left,front-right,rear-left,rear-right"; break; case DevFmtX51: mapname = "front-left,front-right,front-center,lfe,side-left,side-right"; break; case DevFmtX51Rear: mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right"; break; case DevFmtX61: mapname = "front-left,front-right,front-center,lfe,rear-center,side-left,side-right"; break; case DevFmtX71: mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right,side-left,side-right"; break; } if(!pa_channel_map_parse(&chanmap, mapname)) { ERR("Failed to build channel map for %s\n", DevFmtChannelsString(device->FmtChans)); return ALC_FALSE; } SetDefaultWFXChannelOrder(device); self->attr.fragsize = -1; self->attr.prebuf = 0; self->attr.minreq = device->UpdateSize * pa_frame_size(&self->spec); self->attr.tlength = self->attr.minreq * maxu(device->NumUpdates, 2); self->attr.maxlength = -1; self->stream = PulsePlayback_connectStream(self->device_name.c_str(), self->loop, self->context, flags, &self->attr, &self->spec, &chanmap ); if(!self->stream) return ALC_FALSE; pa_stream_set_state_callback(self->stream, PulsePlayback_streamStateCallback, self); pa_stream_set_moved_callback(self->stream, PulsePlayback_streamMovedCallback, self); pa_stream_set_write_callback(self->stream, PulsePlayback_streamWriteCallback, self); self->spec = *(pa_stream_get_sample_spec(self->stream)); if(device->Frequency != self->spec.rate) { /* Server updated our playback rate, so modify the buffer attribs * accordingly. */ device->NumUpdates = (ALuint)clampd( (ALdouble)device->NumUpdates/device->Frequency*self->spec.rate + 0.5, 2.0, 16.0 ); self->attr.minreq = device->UpdateSize * pa_frame_size(&self->spec); self->attr.tlength = self->attr.minreq * device->NumUpdates; self->attr.maxlength = -1; self->attr.prebuf = 0; op = pa_stream_set_buffer_attr(self->stream, &self->attr, stream_success_callback, self->loop); wait_for_operation(op, self->loop); device->Frequency = self->spec.rate; } pa_stream_set_buffer_attr_callback(self->stream, PulsePlayback_bufferAttrCallback, self); PulsePlayback_bufferAttrCallback(self->stream, self); device->NumUpdates = (ALuint)clampu64( (self->attr.tlength + self->attr.minreq/2) / self->attr.minreq, 2, 16 ); device->UpdateSize = self->attr.minreq / pa_frame_size(&self->spec); /* HACK: prebuf should be 0 as that's what we set it to. However on some * systems it comes back as non-0, so we have to make sure the device will * write enough audio to start playback. The lack of manual start control * may have unintended consequences, but it's better than not starting at * all. */ if(self->attr.prebuf != 0) { ALuint len{self->attr.prebuf / (ALuint)pa_frame_size(&self->spec)}; if(len <= device->UpdateSize*device->NumUpdates) ERR("Non-0 prebuf, %u samples (%u bytes), device has %u samples\n", len, self->attr.prebuf, device->UpdateSize*device->NumUpdates); else { ERR("Large prebuf, %u samples (%u bytes), increasing device from %u samples", len, self->attr.prebuf, device->UpdateSize*device->NumUpdates); device->NumUpdates = (len+device->UpdateSize-1) / device->UpdateSize; } } return ALC_TRUE; } ALCboolean PulsePlayback_start(PulsePlayback *self) { try { self->killNow.store(AL_FALSE, std::memory_order_release); self->thread = std::thread(PulsePlayback_mixerProc, self); return ALC_TRUE; } catch(std::exception& e) { ERR("Failed to start thread: %s\n", e.what()); } catch(...) { ERR("Failed to start thread\n"); } return ALC_FALSE; } void PulsePlayback_stop(PulsePlayback *self) { self->killNow.store(AL_TRUE, std::memory_order_release); if(!self->stream || !self->thread.joinable()) return; /* Signal the main loop in case PulseAudio isn't sending us audio requests * (e.g. if the device is suspended). We need to lock the mainloop in case * the mixer is between checking the killNow flag but before waiting for * the signal. */ unique_palock palock{self->loop}; palock.unlock(); pa_threaded_mainloop_signal(self->loop, 0); self->thread.join(); palock.lock(); pa_operation *op{pa_stream_cork(self->stream, 1, stream_success_callback, self->loop)}; wait_for_operation(op, self->loop); } ClockLatency PulsePlayback_getClockLatency(PulsePlayback *self) { ClockLatency ret; pa_usec_t latency; int neg, err; { palock_guard _{self->loop}; ret.ClockTime = GetDeviceClockTime(STATIC_CAST(ALCbackend,self)->mDevice); err = pa_stream_get_latency(self->stream, &latency, &neg); } if(UNLIKELY(err != 0)) { /* FIXME: if err = -PA_ERR_NODATA, it means we were called too soon * after starting the stream and no timing info has been received from * the server yet. Should we wait, possibly stalling the app, or give a * dummy value? Either way, it shouldn't be 0. */ if(err != -PA_ERR_NODATA) ERR("Failed to get stream latency: 0x%x\n", err); latency = 0; neg = 0; } else if(UNLIKELY(neg)) latency = 0; ret.Latency = (ALint64)minu64(latency, U64(0x7fffffffffffffff)/1000) * 1000; return ret; } void PulsePlayback_lock(PulsePlayback *self) { pa_threaded_mainloop_lock(self->loop); } void PulsePlayback_unlock(PulsePlayback *self) { pa_threaded_mainloop_unlock(self->loop); } struct PulseCapture final : public ALCbackend { std::string device_name; const void *cap_store{nullptr}; size_t cap_len{0}; size_t cap_remain{0}; ALCuint last_readable{0}; pa_buffer_attr attr; pa_sample_spec spec; pa_threaded_mainloop *loop{nullptr}; pa_stream *stream{nullptr}; pa_context *context{nullptr}; }; void PulseCapture_deviceCallback(pa_context *context, const pa_source_info *info, int eol, void *pdata); void PulseCapture_probeDevices(void); void PulseCapture_contextStateCallback(pa_context *context, void *pdata); void PulseCapture_streamStateCallback(pa_stream *stream, void *pdata); void PulseCapture_sourceNameCallback(pa_context *context, const pa_source_info *info, int eol, void *pdata); void PulseCapture_streamMovedCallback(pa_stream *stream, void *pdata); pa_stream *PulseCapture_connectStream(const char *device_name, pa_threaded_mainloop *loop, pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap); void PulseCapture_Construct(PulseCapture *self, ALCdevice *device); void PulseCapture_Destruct(PulseCapture *self); ALCenum PulseCapture_open(PulseCapture *self, const ALCchar *name); DECLARE_FORWARD(PulseCapture, ALCbackend, ALCboolean, reset) ALCboolean PulseCapture_start(PulseCapture *self); void PulseCapture_stop(PulseCapture *self); ALCenum PulseCapture_captureSamples(PulseCapture *self, ALCvoid *buffer, ALCuint samples); ALCuint PulseCapture_availableSamples(PulseCapture *self); ClockLatency PulseCapture_getClockLatency(PulseCapture *self); void PulseCapture_lock(PulseCapture *self); void PulseCapture_unlock(PulseCapture *self); DECLARE_DEFAULT_ALLOCATORS(PulseCapture) DEFINE_ALCBACKEND_VTABLE(PulseCapture); void PulseCapture_Construct(PulseCapture *self, ALCdevice *device) { new (self) PulseCapture(); ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(PulseCapture, ALCbackend, self); } void PulseCapture_Destruct(PulseCapture *self) { if(self->loop) { pulse_close(self->loop, self->context, self->stream); self->loop = nullptr; self->context = nullptr; self->stream = nullptr; } ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); self->~PulseCapture(); } void PulseCapture_deviceCallback(pa_context *UNUSED(context), const pa_source_info *info, int eol, void *pdata) { auto loop = reinterpret_cast(pdata); if(eol) { pa_threaded_mainloop_signal(loop, 0); return; } /* Skip this device is if it's already in the list. */ if(std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [info](const DevMap &entry) -> bool { return entry.device_name == info->name; } ) != CaptureDevices.cend()) return; /* Make sure the display name (description) is unique. Append a number * counter as needed. */ int count{1}; std::string newname{info->description}; while(checkName(CaptureDevices, newname)) { newname = info->description; newname += " #"; newname += std::to_string(++count); } CaptureDevices.emplace_back(std::move(newname), info->name); DevMap &newentry = CaptureDevices.back(); TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str()); } void PulseCapture_probeDevices(void) { CaptureDevices.clear(); pa_threaded_mainloop *loop{pa_threaded_mainloop_new()}; if(loop && pa_threaded_mainloop_start(loop) >= 0) { unique_palock palock{loop}; pa_context *context{connect_context(loop, AL_FALSE)}; if(context) { pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS | PA_STREAM_DONT_MOVE}; pa_sample_spec spec; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 1; pa_stream *stream{PulseCapture_connectStream(nullptr, loop, context, flags, nullptr, &spec, nullptr )}; if(stream) { pa_operation *op{pa_context_get_source_info_by_name(context, pa_stream_get_device_name(stream), PulseCapture_deviceCallback, loop )}; wait_for_operation(op, loop); pa_stream_disconnect(stream); pa_stream_unref(stream); stream = nullptr; } pa_operation *op{pa_context_get_source_info_list(context, PulseCapture_deviceCallback, loop )}; wait_for_operation(op, loop); pa_context_disconnect(context); pa_context_unref(context); } palock.unlock(); pa_threaded_mainloop_stop(loop); } if(loop) pa_threaded_mainloop_free(loop); } void PulseCapture_contextStateCallback(pa_context *context, void *pdata) { auto self = reinterpret_cast(pdata); if(pa_context_get_state(context) == PA_CONTEXT_FAILED) { ERR("Received context failure!\n"); aluHandleDisconnect(STATIC_CAST(ALCbackend,self)->mDevice, "Capture state failure"); } pa_threaded_mainloop_signal(self->loop, 0); } void PulseCapture_streamStateCallback(pa_stream *stream, void *pdata) { auto self = reinterpret_cast(pdata); if(pa_stream_get_state(stream) == PA_STREAM_FAILED) { ERR("Received stream failure!\n"); aluHandleDisconnect(STATIC_CAST(ALCbackend,self)->mDevice, "Capture stream failure"); } pa_threaded_mainloop_signal(self->loop, 0); } void PulseCapture_sourceNameCallback(pa_context *UNUSED(context), const pa_source_info *info, int eol, void *pdata) { auto self = reinterpret_cast(pdata); if(eol) { pa_threaded_mainloop_signal(self->loop, 0); return; } ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; al_free(device->DeviceName); device->DeviceName = alstrdup(info->description); } void PulseCapture_streamMovedCallback(pa_stream *stream, void *pdata) { auto self = reinterpret_cast(pdata); self->device_name = pa_stream_get_device_name(stream); TRACE("Stream moved to %s\n", self->device_name.c_str()); } pa_stream *PulseCapture_connectStream(const char *device_name, pa_threaded_mainloop *loop, pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap) { pa_stream *stream{pa_stream_new_with_proplist(context, "Capture Stream", spec, chanmap, prop_filter )}; if(!stream) { ERR("pa_stream_new_with_proplist() failed: %s\n", pa_strerror(pa_context_errno(context))); return nullptr; } pa_stream_set_state_callback(stream, stream_state_callback, loop); if(pa_stream_connect_record(stream, device_name, attr, flags) < 0) { ERR("Stream did not connect: %s\n", pa_strerror(pa_context_errno(context))); pa_stream_unref(stream); return nullptr; } pa_stream_state_t state; while((state=pa_stream_get_state(stream)) != PA_STREAM_READY) { if(!PA_STREAM_IS_GOOD(state)) { ERR("Stream did not get ready: %s\n", pa_strerror(pa_context_errno(context))); pa_stream_unref(stream); return nullptr; } pa_threaded_mainloop_wait(loop); } pa_stream_set_state_callback(stream, nullptr, nullptr); return stream; } ALCenum PulseCapture_open(PulseCapture *self, const ALCchar *name) { ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; const char *pulse_name{nullptr}; if(name) { if(CaptureDevices.empty()) PulseCapture_probeDevices(); auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; } ); if(iter == CaptureDevices.cend()) return ALC_INVALID_VALUE; pulse_name = iter->device_name.c_str(); al_free(device->DeviceName); device->DeviceName = alstrdup(iter->name.c_str()); } std::tie(self->loop, self->context) = pulse_open(PulseCapture_contextStateCallback, self); if(!self->loop) return ALC_INVALID_VALUE; unique_palock palock{self->loop}; switch(device->FmtType) { case DevFmtUByte: self->spec.format = PA_SAMPLE_U8; break; case DevFmtShort: self->spec.format = PA_SAMPLE_S16NE; break; case DevFmtInt: self->spec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: self->spec.format = PA_SAMPLE_FLOAT32NE; break; case DevFmtByte: case DevFmtUShort: case DevFmtUInt: ERR("%s capture samples not supported\n", DevFmtTypeString(device->FmtType)); return ALC_INVALID_VALUE; } const char *mapname{nullptr}; pa_channel_map chanmap; switch(device->FmtChans) { case DevFmtMono: mapname = "mono"; break; case DevFmtStereo: mapname = "front-left,front-right"; break; case DevFmtQuad: mapname = "front-left,front-right,rear-left,rear-right"; break; case DevFmtX51: mapname = "front-left,front-right,front-center,lfe,side-left,side-right"; break; case DevFmtX51Rear: mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right"; break; case DevFmtX61: mapname = "front-left,front-right,front-center,lfe,rear-center,side-left,side-right"; break; case DevFmtX71: mapname = "front-left,front-right,front-center,lfe,rear-left,rear-right,side-left,side-right"; break; case DevFmtAmbi3D: ERR("%s capture samples not supported\n", DevFmtChannelsString(device->FmtChans)); return ALC_INVALID_VALUE; } if(!pa_channel_map_parse(&chanmap, mapname)) { ERR("Failed to build channel map for %s\n", DevFmtChannelsString(device->FmtChans)); return ALC_INVALID_VALUE; } self->spec.rate = device->Frequency; self->spec.channels = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder); if(pa_sample_spec_valid(&self->spec) == 0) { ERR("Invalid sample format\n"); return ALC_INVALID_VALUE; } if(!pa_channel_map_init_auto(&chanmap, self->spec.channels, PA_CHANNEL_MAP_WAVEEX)) { ERR("Couldn't build map for channel count (%d)!\n", self->spec.channels); return ALC_INVALID_VALUE; } ALuint samples{device->UpdateSize * device->NumUpdates}; samples = maxu(samples, 100 * device->Frequency / 1000); self->attr.minreq = -1; self->attr.prebuf = -1; self->attr.maxlength = samples * pa_frame_size(&self->spec); self->attr.tlength = -1; self->attr.fragsize = minu(samples, 50*device->Frequency/1000) * pa_frame_size(&self->spec); pa_stream_flags_t flags{PA_STREAM_START_CORKED|PA_STREAM_ADJUST_LATENCY}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)"); self->stream = PulseCapture_connectStream(pulse_name, self->loop, self->context, flags, &self->attr, &self->spec, &chanmap ); if(!self->stream) return ALC_INVALID_VALUE; pa_stream_set_moved_callback(self->stream, PulseCapture_streamMovedCallback, self); pa_stream_set_state_callback(self->stream, PulseCapture_streamStateCallback, self); self->device_name = pa_stream_get_device_name(self->stream); if(!device->DeviceName || device->DeviceName[0] == 0) { pa_operation *op{pa_context_get_source_info_by_name(self->context, self->device_name.c_str(), PulseCapture_sourceNameCallback, self )}; wait_for_operation(op, self->loop); } return ALC_NO_ERROR; } ALCboolean PulseCapture_start(PulseCapture *self) { palock_guard _{self->loop}; pa_operation *op{pa_stream_cork(self->stream, 0, stream_success_callback, self->loop)}; wait_for_operation(op, self->loop); return ALC_TRUE; } void PulseCapture_stop(PulseCapture *self) { palock_guard _{self->loop}; pa_operation *op{pa_stream_cork(self->stream, 1, stream_success_callback, self->loop)}; wait_for_operation(op, self->loop); } ALCenum PulseCapture_captureSamples(PulseCapture *self, ALCvoid *buffer, ALCuint samples) { ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; ALCuint todo{samples * static_cast(pa_frame_size(&self->spec))}; /* Capture is done in fragment-sized chunks, so we loop until we get all * that's available */ self->last_readable -= todo; unique_palock palock{self->loop}; while(todo > 0) { size_t rem{todo}; if(self->cap_len == 0) { pa_stream_state_t state{pa_stream_get_state(self->stream)}; if(!PA_STREAM_IS_GOOD(state)) { aluHandleDisconnect(device, "Bad capture state: %u", state); return ALC_INVALID_DEVICE; } if(pa_stream_peek(self->stream, &self->cap_store, &self->cap_len) < 0) { ERR("pa_stream_peek() failed: %s\n", pa_strerror(pa_context_errno(self->context))); aluHandleDisconnect(device, "Failed retrieving capture samples: %s", pa_strerror(pa_context_errno(self->context))); return ALC_INVALID_DEVICE; } self->cap_remain = self->cap_len; } if(rem > self->cap_remain) rem = self->cap_remain; memcpy(buffer, self->cap_store, rem); buffer = (ALbyte*)buffer + rem; todo -= rem; self->cap_store = (ALbyte*)self->cap_store + rem; self->cap_remain -= rem; if(self->cap_remain == 0) { pa_stream_drop(self->stream); self->cap_len = 0; } } palock.unlock(); if(todo > 0) memset(buffer, ((device->FmtType==DevFmtUByte) ? 0x80 : 0), todo); return ALC_NO_ERROR; } ALCuint PulseCapture_availableSamples(PulseCapture *self) { ALCdevice *device{STATIC_CAST(ALCbackend,self)->mDevice}; size_t readable{self->cap_remain}; if(ATOMIC_LOAD(&device->Connected, almemory_order_acquire)) { palock_guard _{self->loop}; size_t got{pa_stream_readable_size(self->stream)}; if(static_cast(got) < 0) { ERR("pa_stream_readable_size() failed: %s\n", pa_strerror(got)); aluHandleDisconnect(device, "Failed getting readable size: %s", pa_strerror(got)); } else if(got > self->cap_len) readable += got - self->cap_len; } if(self->last_readable < readable) self->last_readable = readable; return self->last_readable / pa_frame_size(&self->spec); } ClockLatency PulseCapture_getClockLatency(PulseCapture *self) { ClockLatency ret; pa_usec_t latency; int neg, err; { palock_guard _{self->loop}; ret.ClockTime = GetDeviceClockTime(STATIC_CAST(ALCbackend,self)->mDevice); err = pa_stream_get_latency(self->stream, &latency, &neg); } if(UNLIKELY(err != 0)) { ERR("Failed to get stream latency: 0x%x\n", err); latency = 0; neg = 0; } else if(UNLIKELY(neg)) latency = 0; ret.Latency = (ALint64)minu64(latency, U64(0x7fffffffffffffff)/1000) * 1000; return ret; } void PulseCapture_lock(PulseCapture *self) { pa_threaded_mainloop_lock(self->loop); } void PulseCapture_unlock(PulseCapture *self) { pa_threaded_mainloop_unlock(self->loop); } } // namespace bool PulseBackendFactory::init() { bool ret{false}; if(pulse_load()) { pulse_ctx_flags = PA_CONTEXT_NOFLAGS; if(!GetConfigValueBool(nullptr, "pulse", "spawn-server", 1)) pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN; pa_threaded_mainloop *loop{pa_threaded_mainloop_new()}; if(loop && pa_threaded_mainloop_start(loop) >= 0) { unique_palock palock{loop}; pa_context *context{connect_context(loop, AL_TRUE)}; if(context) { ret = true; /* Some libraries (Phonon, Qt) set some pulseaudio properties * through environment variables, which causes all streams in * the process to inherit them. This attempts to filter those * properties out by setting them to 0-length data. */ prop_filter = pa_proplist_new(); pa_proplist_set(prop_filter, PA_PROP_MEDIA_ROLE, nullptr, 0); pa_proplist_set(prop_filter, "phonon.streamid", nullptr, 0); pa_context_disconnect(context); pa_context_unref(context); } palock.unlock(); pa_threaded_mainloop_stop(loop); } if(loop) pa_threaded_mainloop_free(loop); } return ret; } void PulseBackendFactory::deinit() { PlaybackDevices.clear(); CaptureDevices.clear(); if(prop_filter) pa_proplist_free(prop_filter); prop_filter = nullptr; /* PulseAudio doesn't like being CloseLib'd sometimes */ } bool PulseBackendFactory::querySupport(ALCbackend_Type type) { if(type == ALCbackend_Playback || type == ALCbackend_Capture) return true; return false; } void PulseBackendFactory::probe(enum DevProbe type, std::string *outnames) { auto add_device = [outnames](const DevMap &entry) -> void { /* +1 to also append the null char (to ensure a null-separated list and * double-null terminated list). */ outnames->append(entry.name.c_str(), entry.name.length()+1); }; switch(type) { case ALL_DEVICE_PROBE: PulsePlayback_probeDevices(); std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device); break; case CAPTURE_DEVICE_PROBE: PulseCapture_probeDevices(); std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device); break; } } ALCbackend *PulseBackendFactory::createBackend(ALCdevice *device, ALCbackend_Type type) { if(type == ALCbackend_Playback) { PulsePlayback *backend; NEW_OBJ(backend, PulsePlayback)(device); if(!backend) return nullptr; return STATIC_CAST(ALCbackend, backend); } if(type == ALCbackend_Capture) { PulseCapture *backend; NEW_OBJ(backend, PulseCapture)(device); if(!backend) return nullptr; return STATIC_CAST(ALCbackend, backend); } return nullptr; } #else /* PA_API_VERSION == 12 */ #warning "Unsupported API version, backend will be unavailable!" bool PulseBackendFactory::init() { return false; } void PulseBackendFactory::deinit() { } bool PulseBackendFactory::querySupport(ALCbackend_Type) { return false; } void PulseBackendFactory::probe(enum DevProbe, std::string*) { } ALCbackend *PulseBackendFactory::createBackend(ALCdevice*, ALCbackend_Type) { return nullptr; } #endif /* PA_API_VERSION == 12 */ BackendFactory &PulseBackendFactory::getFactory() { static PulseBackendFactory factory{}; return factory; }