/** * OpenAL cross platform audio library * Copyright (C) 2009 by Konstantinos Natsakis * Copyright (C) 2010 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "backends/pulseaudio.h" #include #include #include #include #include #include #include #include #include #include "alMain.h" #include "alu.h" #include "alconfig.h" #include "compat.h" #include "alexcpt.h" #include namespace { #ifdef HAVE_DYNLOAD #define PULSE_FUNCS(MAGIC) \ MAGIC(pa_mainloop_new); \ MAGIC(pa_mainloop_free); \ MAGIC(pa_mainloop_set_poll_func); \ MAGIC(pa_mainloop_run); \ MAGIC(pa_mainloop_get_api); \ MAGIC(pa_context_new); \ MAGIC(pa_context_unref); \ MAGIC(pa_context_get_state); \ MAGIC(pa_context_disconnect); \ MAGIC(pa_context_set_state_callback); \ MAGIC(pa_context_errno); \ MAGIC(pa_context_connect); \ MAGIC(pa_context_get_server_info); \ MAGIC(pa_context_get_sink_info_by_name); \ MAGIC(pa_context_get_sink_info_list); \ MAGIC(pa_context_get_source_info_by_name); \ MAGIC(pa_context_get_source_info_list); \ MAGIC(pa_stream_new); \ MAGIC(pa_stream_unref); \ MAGIC(pa_stream_drop); \ MAGIC(pa_stream_get_state); \ MAGIC(pa_stream_peek); \ MAGIC(pa_stream_write); \ MAGIC(pa_stream_connect_record); \ MAGIC(pa_stream_connect_playback); \ MAGIC(pa_stream_readable_size); \ MAGIC(pa_stream_writable_size); \ MAGIC(pa_stream_is_corked); \ MAGIC(pa_stream_cork); \ MAGIC(pa_stream_is_suspended); \ MAGIC(pa_stream_get_device_name); \ MAGIC(pa_stream_get_latency); \ MAGIC(pa_stream_set_write_callback); \ MAGIC(pa_stream_set_buffer_attr); \ MAGIC(pa_stream_get_buffer_attr); \ MAGIC(pa_stream_get_sample_spec); \ MAGIC(pa_stream_get_time); \ MAGIC(pa_stream_set_read_callback); \ MAGIC(pa_stream_set_state_callback); \ MAGIC(pa_stream_set_moved_callback); \ MAGIC(pa_stream_set_underflow_callback); \ MAGIC(pa_stream_new_with_proplist); \ MAGIC(pa_stream_disconnect); \ MAGIC(pa_stream_set_buffer_attr_callback); \ MAGIC(pa_stream_begin_write); \ MAGIC(pa_channel_map_init_auto); \ MAGIC(pa_channel_map_parse); \ MAGIC(pa_channel_map_snprint); \ MAGIC(pa_channel_map_equal); \ MAGIC(pa_channel_map_superset); \ MAGIC(pa_operation_get_state); \ MAGIC(pa_operation_unref); \ MAGIC(pa_sample_spec_valid); \ MAGIC(pa_frame_size); \ MAGIC(pa_strerror); \ MAGIC(pa_path_get_filename); \ MAGIC(pa_get_binary_name); \ MAGIC(pa_xmalloc); \ MAGIC(pa_xfree); void *pulse_handle; #define MAKE_FUNC(x) decltype(x) * p##x PULSE_FUNCS(MAKE_FUNC) #undef MAKE_FUNC #ifndef IN_IDE_PARSER #define pa_mainloop_new ppa_mainloop_new #define pa_mainloop_free ppa_mainloop_free #define pa_mainloop_set_poll_func ppa_mainloop_set_poll_func #define pa_mainloop_run ppa_mainloop_run #define pa_mainloop_get_api ppa_mainloop_get_api #define pa_context_new ppa_context_new #define pa_context_unref ppa_context_unref #define pa_context_get_state ppa_context_get_state #define pa_context_disconnect ppa_context_disconnect #define pa_context_set_state_callback ppa_context_set_state_callback #define pa_context_errno ppa_context_errno #define pa_context_connect ppa_context_connect #define pa_context_get_server_info ppa_context_get_server_info #define pa_context_get_sink_info_by_name ppa_context_get_sink_info_by_name #define pa_context_get_sink_info_list ppa_context_get_sink_info_list #define pa_context_get_source_info_by_name ppa_context_get_source_info_by_name #define pa_context_get_source_info_list ppa_context_get_source_info_list #define pa_stream_new ppa_stream_new #define pa_stream_unref ppa_stream_unref #define pa_stream_disconnect ppa_stream_disconnect #define pa_stream_drop ppa_stream_drop #define pa_stream_set_write_callback ppa_stream_set_write_callback #define pa_stream_set_buffer_attr ppa_stream_set_buffer_attr #define pa_stream_get_buffer_attr ppa_stream_get_buffer_attr #define pa_stream_get_sample_spec ppa_stream_get_sample_spec #define pa_stream_get_time ppa_stream_get_time #define pa_stream_set_read_callback ppa_stream_set_read_callback #define pa_stream_set_state_callback ppa_stream_set_state_callback #define pa_stream_set_moved_callback ppa_stream_set_moved_callback #define pa_stream_set_underflow_callback ppa_stream_set_underflow_callback #define pa_stream_connect_record ppa_stream_connect_record #define pa_stream_connect_playback ppa_stream_connect_playback #define pa_stream_readable_size ppa_stream_readable_size #define pa_stream_writable_size ppa_stream_writable_size #define pa_stream_is_corked ppa_stream_is_corked #define pa_stream_cork ppa_stream_cork #define pa_stream_is_suspended ppa_stream_is_suspended #define pa_stream_get_device_name ppa_stream_get_device_name #define pa_stream_get_latency ppa_stream_get_latency #define pa_stream_set_buffer_attr_callback ppa_stream_set_buffer_attr_callback #define pa_stream_begin_write ppa_stream_begin_write*/ #define pa_channel_map_init_auto ppa_channel_map_init_auto #define pa_channel_map_parse ppa_channel_map_parse #define pa_channel_map_snprint ppa_channel_map_snprint #define pa_channel_map_equal ppa_channel_map_equal #define pa_channel_map_superset ppa_channel_map_superset #define pa_operation_get_state ppa_operation_get_state #define pa_operation_unref ppa_operation_unref #define pa_sample_spec_valid ppa_sample_spec_valid #define pa_frame_size ppa_frame_size #define pa_strerror ppa_strerror #define pa_stream_get_state ppa_stream_get_state #define pa_stream_peek ppa_stream_peek #define pa_stream_write ppa_stream_write #define pa_xfree ppa_xfree #define pa_path_get_filename ppa_path_get_filename #define pa_get_binary_name ppa_get_binary_name #define pa_xmalloc ppa_xmalloc #endif /* IN_IDE_PARSER */ #endif constexpr pa_channel_map MonoChanMap{ 1, {PA_CHANNEL_POSITION_MONO} }, StereoChanMap{ 2, {PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT} }, QuadChanMap{ 4, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT } }, X51ChanMap{ 6, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } }, X51RearChanMap{ 6, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT } }, X61ChanMap{ 7, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_CENTER, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } }, X71ChanMap{ 8, { PA_CHANNEL_POSITION_FRONT_LEFT, PA_CHANNEL_POSITION_FRONT_RIGHT, PA_CHANNEL_POSITION_FRONT_CENTER, PA_CHANNEL_POSITION_LFE, PA_CHANNEL_POSITION_REAR_LEFT, PA_CHANNEL_POSITION_REAR_RIGHT, PA_CHANNEL_POSITION_SIDE_LEFT, PA_CHANNEL_POSITION_SIDE_RIGHT } }; size_t ChannelFromPulse(pa_channel_position_t chan) { switch(chan) { case PA_CHANNEL_POSITION_INVALID: break; case PA_CHANNEL_POSITION_MONO: return FrontCenter; case PA_CHANNEL_POSITION_FRONT_LEFT: return FrontLeft; case PA_CHANNEL_POSITION_FRONT_RIGHT: return FrontRight; case PA_CHANNEL_POSITION_FRONT_CENTER: return FrontCenter; case PA_CHANNEL_POSITION_REAR_CENTER: return BackCenter; case PA_CHANNEL_POSITION_REAR_LEFT: return BackLeft; case PA_CHANNEL_POSITION_REAR_RIGHT: return BackRight; case PA_CHANNEL_POSITION_LFE: return LFE; case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: break; case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: break; case PA_CHANNEL_POSITION_SIDE_LEFT: return SideLeft; case PA_CHANNEL_POSITION_SIDE_RIGHT: return SideRight; case PA_CHANNEL_POSITION_AUX0: return Aux0; case PA_CHANNEL_POSITION_AUX1: return Aux1; case PA_CHANNEL_POSITION_AUX2: return Aux2; case PA_CHANNEL_POSITION_AUX3: return Aux3; case PA_CHANNEL_POSITION_AUX4: return Aux4; case PA_CHANNEL_POSITION_AUX5: return Aux5; case PA_CHANNEL_POSITION_AUX6: return Aux6; case PA_CHANNEL_POSITION_AUX7: return Aux7; case PA_CHANNEL_POSITION_AUX8: return Aux8; case PA_CHANNEL_POSITION_AUX9: return Aux9; case PA_CHANNEL_POSITION_AUX10: return Aux10; case PA_CHANNEL_POSITION_AUX11: return Aux11; case PA_CHANNEL_POSITION_AUX12: return Aux12; case PA_CHANNEL_POSITION_AUX13: return Aux13; case PA_CHANNEL_POSITION_AUX14: return Aux14; case PA_CHANNEL_POSITION_AUX15: return Aux15; case PA_CHANNEL_POSITION_AUX16: break; case PA_CHANNEL_POSITION_AUX17: break; case PA_CHANNEL_POSITION_AUX18: break; case PA_CHANNEL_POSITION_AUX19: break; case PA_CHANNEL_POSITION_AUX20: break; case PA_CHANNEL_POSITION_AUX21: break; case PA_CHANNEL_POSITION_AUX22: break; case PA_CHANNEL_POSITION_AUX23: break; case PA_CHANNEL_POSITION_AUX24: break; case PA_CHANNEL_POSITION_AUX25: break; case PA_CHANNEL_POSITION_AUX26: break; case PA_CHANNEL_POSITION_AUX27: break; case PA_CHANNEL_POSITION_AUX28: break; case PA_CHANNEL_POSITION_AUX29: break; case PA_CHANNEL_POSITION_AUX30: break; case PA_CHANNEL_POSITION_AUX31: break; case PA_CHANNEL_POSITION_TOP_CENTER: break; case PA_CHANNEL_POSITION_TOP_FRONT_LEFT: return UpperFrontLeft; case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT: return UpperFrontRight; case PA_CHANNEL_POSITION_TOP_FRONT_CENTER: break; case PA_CHANNEL_POSITION_TOP_REAR_LEFT: return UpperBackLeft; case PA_CHANNEL_POSITION_TOP_REAR_RIGHT: return UpperBackRight; case PA_CHANNEL_POSITION_TOP_REAR_CENTER: break; case PA_CHANNEL_POSITION_MAX: break; } throw al::backend_exception{ALC_INVALID_VALUE, "Unexpected channel enum %d", chan}; } void SetChannelOrderFromMap(ALCdevice *device, const pa_channel_map &chanmap) { device->RealOut.ChannelIndex.fill(-1); for(int i{0};i < chanmap.channels;++i) device->RealOut.ChannelIndex[ChannelFromPulse(chanmap.map[i])] = i; } /* *grumble* Don't use enums for bitflags. */ inline pa_stream_flags_t operator|(pa_stream_flags_t lhs, pa_stream_flags_t rhs) { return pa_stream_flags_t(int(lhs) | int(rhs)); } inline pa_stream_flags_t& operator|=(pa_stream_flags_t &lhs, pa_stream_flags_t rhs) { lhs = pa_stream_flags_t(int(lhs) | int(rhs)); return lhs; } inline pa_context_flags_t& operator|=(pa_context_flags_t &lhs, pa_context_flags_t rhs) { lhs = pa_context_flags_t(int(lhs) | int(rhs)); return lhs; } inline pa_stream_flags_t& operator&=(pa_stream_flags_t &lhs, int rhs) { lhs = pa_stream_flags_t(int(lhs) & rhs); return lhs; } /* Global flags and properties */ pa_context_flags_t pulse_ctx_flags; pa_mainloop *pulse_mainloop{nullptr}; std::mutex pulse_lock; std::condition_variable pulse_condvar; int pulse_poll_func(struct pollfd *ufds, unsigned long nfds, int timeout, void *userdata) { auto plock = static_cast*>(userdata); plock->unlock(); int r{poll(ufds, nfds, timeout)}; plock->lock(); return r; } int pulse_mainloop_thread() { SetRTPriority(); std::unique_lock plock{pulse_lock}; pulse_mainloop = pa_mainloop_new(); pa_mainloop_set_poll_func(pulse_mainloop, pulse_poll_func, &plock); pulse_condvar.notify_all(); int ret{}; pa_mainloop_run(pulse_mainloop, &ret); pa_mainloop_free(pulse_mainloop); pulse_mainloop = nullptr; return ret; } /* PulseAudio Event Callbacks */ void context_state_callback(pa_context *context, void* /*pdata*/) { pa_context_state_t state{pa_context_get_state(context)}; if(state == PA_CONTEXT_READY || !PA_CONTEXT_IS_GOOD(state)) pulse_condvar.notify_all(); } void stream_state_callback(pa_stream *stream, void* /*pdata*/) { pa_stream_state_t state{pa_stream_get_state(stream)}; if(state == PA_STREAM_READY || !PA_STREAM_IS_GOOD(state)) pulse_condvar.notify_all(); } void stream_success_callback(pa_stream* /*stream*/, int /*success*/, void* /*pdata*/) { pulse_condvar.notify_all(); } void wait_for_operation(pa_operation *op, std::unique_lock &plock) { if(op) { while(pa_operation_get_state(op) == PA_OPERATION_RUNNING) pulse_condvar.wait(plock); pa_operation_unref(op); } } pa_context *connect_context(std::unique_lock &plock) { const char *name{"OpenAL Soft"}; const PathNamePair &binname = GetProcBinary(); if(!binname.fname.empty()) name = binname.fname.c_str(); if(UNLIKELY(!pulse_mainloop)) { std::thread{pulse_mainloop_thread}.detach(); while(!pulse_mainloop) pulse_condvar.wait(plock); } pa_context *context{pa_context_new(pa_mainloop_get_api(pulse_mainloop), name)}; if(!context) throw al::backend_exception{ALC_OUT_OF_MEMORY, "pa_context_new() failed"}; pa_context_set_state_callback(context, context_state_callback, nullptr); int err; if((err=pa_context_connect(context, nullptr, pulse_ctx_flags, nullptr)) >= 0) { pa_context_state_t state; while((state=pa_context_get_state(context)) != PA_CONTEXT_READY) { if(!PA_CONTEXT_IS_GOOD(state)) { err = pa_context_errno(context); if(err > 0) err = -err; break; } pulse_condvar.wait(plock); } } pa_context_set_state_callback(context, nullptr, nullptr); if(err < 0) { pa_context_unref(context); throw al::backend_exception{ALC_INVALID_VALUE, "Context did not connect (%s)", pa_strerror(err)}; } return context; } void pulse_close(pa_context *context, pa_stream *stream) { std::lock_guard _{pulse_lock}; if(stream) { pa_stream_set_state_callback(stream, nullptr, nullptr); pa_stream_set_moved_callback(stream, nullptr, nullptr); pa_stream_set_write_callback(stream, nullptr, nullptr); pa_stream_set_buffer_attr_callback(stream, nullptr, nullptr); pa_stream_disconnect(stream); pa_stream_unref(stream); } pa_context_disconnect(context); pa_context_unref(context); } struct DevMap { std::string name; std::string device_name; }; bool checkName(const al::vector &list, const std::string &name) { return std::find_if(list.cbegin(), list.cend(), [&name](const DevMap &entry) -> bool { return entry.name == name; } ) != list.cend(); } al::vector PlaybackDevices; al::vector CaptureDevices; pa_stream *pulse_connect_stream(const char *device_name, std::unique_lock &plock, pa_context *context, pa_stream_flags_t flags, pa_buffer_attr *attr, pa_sample_spec *spec, pa_channel_map *chanmap, BackendType type) { const char *stream_id{(type==BackendType::Playback) ? "Playback Stream" : "Capture Stream"}; pa_stream *stream{pa_stream_new(context, stream_id, spec, chanmap)}; if(!stream) throw al::backend_exception{ALC_OUT_OF_MEMORY, "pa_stream_new() failed (%s)", pa_strerror(pa_context_errno(context))}; pa_stream_set_state_callback(stream, stream_state_callback, nullptr); int err{(type==BackendType::Playback) ? pa_stream_connect_playback(stream, device_name, attr, flags, nullptr, nullptr) : pa_stream_connect_record(stream, device_name, attr, flags)}; if(err < 0) { pa_stream_unref(stream); throw al::backend_exception{ALC_INVALID_VALUE, "%s did not connect (%s)", stream_id, pa_strerror(err)}; } pa_stream_state_t state; while((state=pa_stream_get_state(stream)) != PA_STREAM_READY) { if(!PA_STREAM_IS_GOOD(state)) { int err{pa_context_errno(context)}; pa_stream_unref(stream); throw al::backend_exception{ALC_INVALID_VALUE, "%s did not get ready (%s)", stream_id, pa_strerror(err)}; } pulse_condvar.wait(plock); } pa_stream_set_state_callback(stream, nullptr, nullptr); return stream; } void device_sink_callback(pa_context*, const pa_sink_info *info, int eol, void*) { if(eol) { pulse_condvar.notify_all(); return; } /* Skip this device is if it's already in the list. */ if(std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [info](const DevMap &entry) -> bool { return entry.device_name == info->name; } ) != PlaybackDevices.cend()) return; /* Make sure the display name (description) is unique. Append a number * counter as needed. */ int count{1}; std::string newname{info->description}; while(checkName(PlaybackDevices, newname)) { newname = info->description; newname += " #"; newname += std::to_string(++count); } PlaybackDevices.emplace_back(DevMap{std::move(newname), info->name}); DevMap &newentry = PlaybackDevices.back(); TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str()); } void probePlaybackDevices() { PlaybackDevices.clear(); try { std::unique_lock plock{pulse_lock}; pa_context *context{connect_context(plock)}; const pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS | PA_STREAM_DONT_MOVE}; pa_sample_spec spec{}; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 2; pa_stream *stream{pulse_connect_stream(nullptr, plock, context, flags, nullptr, &spec, nullptr, BackendType::Playback)}; pa_operation *op{pa_context_get_sink_info_by_name(context, pa_stream_get_device_name(stream), device_sink_callback, nullptr)}; wait_for_operation(op, plock); pa_stream_disconnect(stream); pa_stream_unref(stream); stream = nullptr; op = pa_context_get_sink_info_list(context, device_sink_callback, nullptr); wait_for_operation(op, plock); pa_context_disconnect(context); pa_context_unref(context); } catch(std::exception &e) { ERR("Error enumerating devices: %s\n", e.what()); } } void device_source_callback(pa_context*, const pa_source_info *info, int eol, void*) { if(eol) { pulse_condvar.notify_all(); return; } /* Skip this device is if it's already in the list. */ if(std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [info](const DevMap &entry) -> bool { return entry.device_name == info->name; } ) != CaptureDevices.cend()) return; /* Make sure the display name (description) is unique. Append a number * counter as needed. */ int count{1}; std::string newname{info->description}; while(checkName(CaptureDevices, newname)) { newname = info->description; newname += " #"; newname += std::to_string(++count); } CaptureDevices.emplace_back(DevMap{std::move(newname), info->name}); DevMap &newentry = CaptureDevices.back(); TRACE("Got device \"%s\", \"%s\"\n", newentry.name.c_str(), newentry.device_name.c_str()); } void probeCaptureDevices() { CaptureDevices.clear(); try { std::unique_lock plock{pulse_lock}; pa_context *context{connect_context(plock)}; const pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS | PA_STREAM_DONT_MOVE}; pa_sample_spec spec{}; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 1; pa_stream *stream{pulse_connect_stream(nullptr, plock, context, flags, nullptr, &spec, nullptr, BackendType::Capture)}; pa_operation *op{pa_context_get_source_info_by_name(context, pa_stream_get_device_name(stream), device_source_callback, nullptr)}; wait_for_operation(op, plock); pa_stream_disconnect(stream); pa_stream_unref(stream); stream = nullptr; op = pa_context_get_source_info_list(context, device_source_callback, nullptr); wait_for_operation(op, plock); pa_context_disconnect(context); pa_context_unref(context); } catch(std::exception &e) { ERR("Error enumerating devices: %s\n", e.what()); } } struct PulsePlayback final : public BackendBase { PulsePlayback(ALCdevice *device) noexcept : BackendBase{device} { } ~PulsePlayback() override; static void bufferAttrCallbackC(pa_stream *stream, void *pdata); void bufferAttrCallback(pa_stream *stream); static void contextStateCallbackC(pa_context *context, void *pdata); void contextStateCallback(pa_context *context); static void streamStateCallbackC(pa_stream *stream, void *pdata); void streamStateCallback(pa_stream *stream); static void streamWriteCallbackC(pa_stream *stream, size_t nbytes, void *pdata); void streamWriteCallback(pa_stream *stream, size_t nbytes); static void sinkInfoCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata); void sinkInfoCallback(pa_context *context, const pa_sink_info *info, int eol); static void sinkNameCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata); void sinkNameCallback(pa_context *context, const pa_sink_info *info, int eol); static void streamMovedCallbackC(pa_stream *stream, void *pdata); void streamMovedCallback(pa_stream *stream); ALCenum open(const ALCchar *name) override; ALCboolean reset() override; ALCboolean start() override; void stop() override; ClockLatency getClockLatency() override; void lock() override; void unlock() override; std::string mDeviceName; pa_buffer_attr mAttr; pa_sample_spec mSpec; pa_stream *mStream{nullptr}; pa_context *mContext{nullptr}; ALuint mFrameSize{0u}; DEF_NEWDEL(PulsePlayback) }; PulsePlayback::~PulsePlayback() { if(!mContext) return; pulse_close(mContext, mStream); mContext = nullptr; mStream = nullptr; } void PulsePlayback::bufferAttrCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->bufferAttrCallback(stream); } void PulsePlayback::bufferAttrCallback(pa_stream *stream) { /* FIXME: Update the device's UpdateSize (and/or BufferSize) using the new * buffer attributes? Changing UpdateSize will change the ALC_REFRESH * property, which probably shouldn't change between device resets. But * leaving it alone means ALC_REFRESH will be off. */ mAttr = *(pa_stream_get_buffer_attr(stream)); TRACE("minreq=%d, tlength=%d, prebuf=%d\n", mAttr.minreq, mAttr.tlength, mAttr.prebuf); } void PulsePlayback::contextStateCallbackC(pa_context *context, void *pdata) { static_cast(pdata)->contextStateCallback(context); } void PulsePlayback::contextStateCallback(pa_context *context) { if(pa_context_get_state(context) == PA_CONTEXT_FAILED) { ERR("Received context failure!\n"); aluHandleDisconnect(mDevice, "Playback state failure"); } pulse_condvar.notify_all(); } void PulsePlayback::streamStateCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->streamStateCallback(stream); } void PulsePlayback::streamStateCallback(pa_stream *stream) { if(pa_stream_get_state(stream) == PA_STREAM_FAILED) { ERR("Received stream failure!\n"); aluHandleDisconnect(mDevice, "Playback stream failure"); } pulse_condvar.notify_all(); } void PulsePlayback::streamWriteCallbackC(pa_stream *stream, size_t nbytes, void *pdata) { static_cast(pdata)->streamWriteCallback(stream, nbytes); } void PulsePlayback::streamWriteCallback(pa_stream *stream, size_t nbytes) { void *buf{pa_xmalloc(nbytes)}; aluMixData(mDevice, buf, nbytes/mFrameSize); int ret{pa_stream_write(stream, buf, nbytes, pa_xfree, 0, PA_SEEK_RELATIVE)}; if(UNLIKELY(ret != PA_OK)) ERR("Failed to write to stream: %d, %s\n", ret, pa_strerror(ret)); } void PulsePlayback::sinkInfoCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata) { static_cast(pdata)->sinkInfoCallback(context, info, eol); } void PulsePlayback::sinkInfoCallback(pa_context*, const pa_sink_info *info, int eol) { struct ChannelMap { DevFmtChannels chans; pa_channel_map map; }; static constexpr std::array chanmaps{{ { DevFmtX71, X71ChanMap }, { DevFmtX61, X61ChanMap }, { DevFmtX51, X51ChanMap }, { DevFmtX51Rear, X51RearChanMap }, { DevFmtQuad, QuadChanMap }, { DevFmtStereo, StereoChanMap }, { DevFmtMono, MonoChanMap } }}; if(eol) { pulse_condvar.notify_all(); return; } auto chanmap = std::find_if(chanmaps.cbegin(), chanmaps.cend(), [info](const ChannelMap &chanmap) -> bool { return pa_channel_map_superset(&info->channel_map, &chanmap.map); } ); if(chanmap != chanmaps.cend()) { if(!mDevice->Flags.get()) mDevice->FmtChans = chanmap->chans; } else { char chanmap_str[PA_CHANNEL_MAP_SNPRINT_MAX]{}; pa_channel_map_snprint(chanmap_str, sizeof(chanmap_str), &info->channel_map); WARN("Failed to find format for channel map:\n %s\n", chanmap_str); } if(info->active_port) TRACE("Active port: %s (%s)\n", info->active_port->name, info->active_port->description); mDevice->IsHeadphones = (mDevice->FmtChans == DevFmtStereo && info->active_port && strcmp(info->active_port->name, "analog-output-headphones") == 0); } void PulsePlayback::sinkNameCallbackC(pa_context *context, const pa_sink_info *info, int eol, void *pdata) { static_cast(pdata)->sinkNameCallback(context, info, eol); } void PulsePlayback::sinkNameCallback(pa_context*, const pa_sink_info *info, int eol) { if(eol) { pulse_condvar.notify_all(); return; } mDevice->DeviceName = info->description; } void PulsePlayback::streamMovedCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->streamMovedCallback(stream); } void PulsePlayback::streamMovedCallback(pa_stream *stream) { mDeviceName = pa_stream_get_device_name(stream); TRACE("Stream moved to %s\n", mDeviceName.c_str()); } ALCenum PulsePlayback::open(const ALCchar *name) { const char *pulse_name{nullptr}; const char *dev_name{nullptr}; if(name) { if(PlaybackDevices.empty()) probePlaybackDevices(); auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; } ); if(iter == PlaybackDevices.cend()) throw al::backend_exception{ALC_INVALID_VALUE, "Device name \"%s\" not found", name}; pulse_name = iter->device_name.c_str(); dev_name = iter->name.c_str(); } std::unique_lock plock{pulse_lock}; mContext = connect_context(plock); pa_context_set_state_callback(mContext, &PulsePlayback::contextStateCallbackC, this); pa_stream_flags_t flags{PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 1)) flags |= PA_STREAM_DONT_MOVE; pa_sample_spec spec{}; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 2; if(!pulse_name) { pulse_name = getenv("ALSOFT_PULSE_DEFAULT"); if(pulse_name && !pulse_name[0]) pulse_name = nullptr; } TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)"); mStream = pulse_connect_stream(pulse_name, plock, mContext, flags, nullptr, &spec, nullptr, BackendType::Playback); pa_stream_set_moved_callback(mStream, &PulsePlayback::streamMovedCallbackC, this); mFrameSize = pa_frame_size(pa_stream_get_sample_spec(mStream)); mDeviceName = pa_stream_get_device_name(mStream); if(!dev_name) { pa_operation *op{pa_context_get_sink_info_by_name(mContext, mDeviceName.c_str(), &PulsePlayback::sinkNameCallbackC, this)}; wait_for_operation(op, plock); } else mDevice->DeviceName = dev_name; return ALC_NO_ERROR; } ALCboolean PulsePlayback::reset() { std::unique_lock plock{pulse_lock}; if(mStream) { pa_stream_set_state_callback(mStream, nullptr, nullptr); pa_stream_set_moved_callback(mStream, nullptr, nullptr); pa_stream_set_write_callback(mStream, nullptr, nullptr); pa_stream_set_buffer_attr_callback(mStream, nullptr, nullptr); pa_stream_disconnect(mStream); pa_stream_unref(mStream); mStream = nullptr; } pa_operation *op{pa_context_get_sink_info_by_name(mContext, mDeviceName.c_str(), &PulsePlayback::sinkInfoCallbackC, this)}; wait_for_operation(op, plock); pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_AUTO_TIMING_UPDATE | PA_STREAM_EARLY_REQUESTS}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 1)) flags |= PA_STREAM_DONT_MOVE; if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "adjust-latency", 0)) { /* ADJUST_LATENCY can't be specified with EARLY_REQUESTS, for some * reason. So if the user wants to adjust the overall device latency, * we can't ask to get write signals as soon as minreq is reached. */ flags &= ~PA_STREAM_EARLY_REQUESTS; flags |= PA_STREAM_ADJUST_LATENCY; } if(GetConfigValueBool(mDevice->DeviceName.c_str(), "pulse", "fix-rate", 0) || !mDevice->Flags.get()) flags |= PA_STREAM_FIX_RATE; pa_channel_map chanmap{}; switch(mDevice->FmtChans) { case DevFmtMono: chanmap = MonoChanMap; break; case DevFmtAmbi3D: mDevice->FmtChans = DevFmtStereo; /*fall-through*/ case DevFmtStereo: chanmap = StereoChanMap; break; case DevFmtQuad: chanmap = QuadChanMap; break; case DevFmtX51: chanmap = X51ChanMap; break; case DevFmtX51Rear: chanmap = X51RearChanMap; break; case DevFmtX61: chanmap = X61ChanMap; break; case DevFmtX71: chanmap = X71ChanMap; break; } SetChannelOrderFromMap(mDevice, chanmap); switch(mDevice->FmtType) { case DevFmtByte: mDevice->FmtType = DevFmtUByte; /* fall-through */ case DevFmtUByte: mSpec.format = PA_SAMPLE_U8; break; case DevFmtUShort: mDevice->FmtType = DevFmtShort; /* fall-through */ case DevFmtShort: mSpec.format = PA_SAMPLE_S16NE; break; case DevFmtUInt: mDevice->FmtType = DevFmtInt; /* fall-through */ case DevFmtInt: mSpec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: mSpec.format = PA_SAMPLE_FLOAT32NE; break; } mSpec.rate = mDevice->Frequency; mSpec.channels = mDevice->channelsFromFmt(); if(pa_sample_spec_valid(&mSpec) == 0) throw al::backend_exception{ALC_INVALID_VALUE, "Invalid sample spec"}; mAttr.maxlength = -1; mAttr.tlength = mDevice->BufferSize * pa_frame_size(&mSpec); mAttr.prebuf = 0; mAttr.minreq = mDevice->UpdateSize * pa_frame_size(&mSpec); mAttr.fragsize = -1; mStream = pulse_connect_stream(mDeviceName.c_str(), plock, mContext, flags, &mAttr, &mSpec, &chanmap, BackendType::Playback); pa_stream_set_state_callback(mStream, &PulsePlayback::streamStateCallbackC, this); pa_stream_set_moved_callback(mStream, &PulsePlayback::streamMovedCallbackC, this); mSpec = *(pa_stream_get_sample_spec(mStream)); mFrameSize = pa_frame_size(&mSpec); if(mDevice->Frequency != mSpec.rate) { /* Server updated our playback rate, so modify the buffer attribs * accordingly. */ const auto scale = static_cast(mSpec.rate) / mDevice->Frequency; const ALuint perlen{static_cast(clampd(scale*mDevice->UpdateSize + 0.5, 64.0, 8192.0))}; const ALuint buflen{static_cast(clampd(scale*mDevice->BufferSize + 0.5, perlen*2, std::numeric_limits::max()/mFrameSize))}; mAttr.maxlength = -1; mAttr.tlength = buflen * mFrameSize; mAttr.prebuf = 0; mAttr.minreq = perlen * mFrameSize; op = pa_stream_set_buffer_attr(mStream, &mAttr, stream_success_callback, nullptr); wait_for_operation(op, plock); mDevice->Frequency = mSpec.rate; } pa_stream_set_buffer_attr_callback(mStream, &PulsePlayback::bufferAttrCallbackC, this); bufferAttrCallback(mStream); mDevice->BufferSize = mAttr.tlength / mFrameSize; mDevice->UpdateSize = mAttr.minreq / mFrameSize; /* HACK: prebuf should be 0 as that's what we set it to. However on some * systems it comes back as non-0, so we have to make sure the device will * write enough audio to start playback. The lack of manual start control * may have unintended consequences, but it's better than not starting at * all. */ if(mAttr.prebuf != 0) { ALuint len{mAttr.prebuf / mFrameSize}; if(len <= mDevice->BufferSize) ERR("Non-0 prebuf, %u samples (%u bytes), device has %u samples\n", len, mAttr.prebuf, mDevice->BufferSize); } return ALC_TRUE; } ALCboolean PulsePlayback::start() { std::unique_lock plock{pulse_lock}; pa_stream_set_write_callback(mStream, &PulsePlayback::streamWriteCallbackC, this); pa_operation *op{pa_stream_cork(mStream, 0, stream_success_callback, nullptr)}; wait_for_operation(op, plock); return ALC_TRUE; } void PulsePlayback::stop() { std::unique_lock plock{pulse_lock}; pa_stream_set_write_callback(mStream, nullptr, nullptr); pa_operation *op{pa_stream_cork(mStream, 1, stream_success_callback, nullptr)}; wait_for_operation(op, plock); } ClockLatency PulsePlayback::getClockLatency() { ClockLatency ret; pa_usec_t latency; int neg, err; { std::lock_guard _{pulse_lock}; ret.ClockTime = GetDeviceClockTime(mDevice); err = pa_stream_get_latency(mStream, &latency, &neg); } if(UNLIKELY(err != 0)) { /* FIXME: if err = -PA_ERR_NODATA, it means we were called too soon * after starting the stream and no timing info has been received from * the server yet. Should we wait, possibly stalling the app, or give a * dummy value? Either way, it shouldn't be 0. */ if(err != -PA_ERR_NODATA) ERR("Failed to get stream latency: 0x%x\n", err); latency = 0; neg = 0; } else if(UNLIKELY(neg)) latency = 0; ret.Latency = std::chrono::microseconds{latency}; return ret; } void PulsePlayback::lock() { pulse_lock.lock(); } void PulsePlayback::unlock() { pulse_lock.unlock(); } struct PulseCapture final : public BackendBase { PulseCapture(ALCdevice *device) noexcept : BackendBase{device} { } ~PulseCapture() override; static void contextStateCallbackC(pa_context *context, void *pdata); void contextStateCallback(pa_context *context); static void streamStateCallbackC(pa_stream *stream, void *pdata); void streamStateCallback(pa_stream *stream); static void sourceNameCallbackC(pa_context *context, const pa_source_info *info, int eol, void *pdata); void sourceNameCallback(pa_context *context, const pa_source_info *info, int eol); static void streamMovedCallbackC(pa_stream *stream, void *pdata); void streamMovedCallback(pa_stream *stream); ALCenum open(const ALCchar *name) override; ALCboolean start() override; void stop() override; ALCenum captureSamples(ALCvoid *buffer, ALCuint samples) override; ALCuint availableSamples() override; ClockLatency getClockLatency() override; void lock() override; void unlock() override; std::string mDeviceName; ALCuint mLastReadable{0u}; al::byte mSilentVal{}; al::span mCapBuffer; ssize_t mCapLen{0}; pa_buffer_attr mAttr{}; pa_sample_spec mSpec{}; pa_stream *mStream{nullptr}; pa_context *mContext{nullptr}; DEF_NEWDEL(PulseCapture) }; PulseCapture::~PulseCapture() { if(!mContext) return; pulse_close(mContext, mStream); mContext = nullptr; mStream = nullptr; } void PulseCapture::contextStateCallbackC(pa_context *context, void *pdata) { static_cast(pdata)->contextStateCallback(context); } void PulseCapture::contextStateCallback(pa_context *context) { if(pa_context_get_state(context) == PA_CONTEXT_FAILED) { ERR("Received context failure!\n"); aluHandleDisconnect(mDevice, "Capture state failure"); } pulse_condvar.notify_all(); } void PulseCapture::streamStateCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->streamStateCallback(stream); } void PulseCapture::streamStateCallback(pa_stream *stream) { if(pa_stream_get_state(stream) == PA_STREAM_FAILED) { ERR("Received stream failure!\n"); aluHandleDisconnect(mDevice, "Capture stream failure"); } pulse_condvar.notify_all(); } void PulseCapture::sourceNameCallbackC(pa_context *context, const pa_source_info *info, int eol, void *pdata) { static_cast(pdata)->sourceNameCallback(context, info, eol); } void PulseCapture::sourceNameCallback(pa_context*, const pa_source_info *info, int eol) { if(eol) { pulse_condvar.notify_all(); return; } mDevice->DeviceName = info->description; } void PulseCapture::streamMovedCallbackC(pa_stream *stream, void *pdata) { static_cast(pdata)->streamMovedCallback(stream); } void PulseCapture::streamMovedCallback(pa_stream *stream) { mDeviceName = pa_stream_get_device_name(stream); TRACE("Stream moved to %s\n", mDeviceName.c_str()); } ALCenum PulseCapture::open(const ALCchar *name) { const char *pulse_name{nullptr}; if(name) { if(CaptureDevices.empty()) probeCaptureDevices(); auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(), [name](const DevMap &entry) -> bool { return entry.name == name; } ); if(iter == CaptureDevices.cend()) throw al::backend_exception{ALC_INVALID_VALUE, "Device name \"%s\" not found", name}; pulse_name = iter->device_name.c_str(); mDevice->DeviceName = iter->name; } std::unique_lock plock{pulse_lock}; mContext = connect_context(plock); pa_context_set_state_callback(mContext, &PulseCapture::contextStateCallbackC, this); pa_channel_map chanmap{}; switch(mDevice->FmtChans) { case DevFmtMono: chanmap = MonoChanMap; break; case DevFmtStereo: chanmap = StereoChanMap; break; case DevFmtQuad: chanmap = QuadChanMap; break; case DevFmtX51: chanmap = X51ChanMap; break; case DevFmtX51Rear: chanmap = X51RearChanMap; break; case DevFmtX61: chanmap = X61ChanMap; break; case DevFmtX71: chanmap = X71ChanMap; break; case DevFmtAmbi3D: throw al::backend_exception{ALC_INVALID_VALUE, "%s capture samples not supported", DevFmtChannelsString(mDevice->FmtChans)}; } SetChannelOrderFromMap(mDevice, chanmap); switch(mDevice->FmtType) { case DevFmtUByte: mSilentVal = al::byte(0x80); mSpec.format = PA_SAMPLE_U8; break; case DevFmtShort: mSpec.format = PA_SAMPLE_S16NE; break; case DevFmtInt: mSpec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: mSpec.format = PA_SAMPLE_FLOAT32NE; break; case DevFmtByte: case DevFmtUShort: case DevFmtUInt: throw al::backend_exception{ALC_INVALID_VALUE, "%s capture samples not supported", DevFmtTypeString(mDevice->FmtType)}; } mSpec.rate = mDevice->Frequency; mSpec.channels = mDevice->channelsFromFmt(); if(pa_sample_spec_valid(&mSpec) == 0) throw al::backend_exception{ALC_INVALID_VALUE, "Invalid sample format"}; ALuint samples{mDevice->BufferSize}; samples = maxu(samples, 100 * mDevice->Frequency / 1000); mAttr.minreq = -1; mAttr.prebuf = -1; mAttr.maxlength = samples * pa_frame_size(&mSpec); mAttr.tlength = -1; mAttr.fragsize = minu(samples, 50*mDevice->Frequency/1000) * pa_frame_size(&mSpec); pa_stream_flags_t flags{PA_STREAM_START_CORKED | PA_STREAM_ADJUST_LATENCY}; if(!GetConfigValueBool(nullptr, "pulse", "allow-moves", 1)) flags |= PA_STREAM_DONT_MOVE; TRACE("Connecting to \"%s\"\n", pulse_name ? pulse_name : "(default)"); mStream = pulse_connect_stream(pulse_name, plock, mContext, flags, &mAttr, &mSpec, &chanmap, BackendType::Capture); pa_stream_set_moved_callback(mStream, &PulseCapture::streamMovedCallbackC, this); pa_stream_set_state_callback(mStream, &PulseCapture::streamStateCallbackC, this); mDeviceName = pa_stream_get_device_name(mStream); if(mDevice->DeviceName.empty()) { pa_operation *op{pa_context_get_source_info_by_name(mContext, mDeviceName.c_str(), &PulseCapture::sourceNameCallbackC, this)}; wait_for_operation(op, plock); } return ALC_NO_ERROR; } ALCboolean PulseCapture::start() { std::unique_lock plock{pulse_lock}; pa_operation *op{pa_stream_cork(mStream, 0, stream_success_callback, nullptr)}; wait_for_operation(op, plock); return ALC_TRUE; } void PulseCapture::stop() { std::unique_lock plock{pulse_lock}; pa_operation *op{pa_stream_cork(mStream, 1, stream_success_callback, nullptr)}; wait_for_operation(op, plock); } ALCenum PulseCapture::captureSamples(ALCvoid *buffer, ALCuint samples) { al::span dstbuf{static_cast(buffer), samples * pa_frame_size(&mSpec)}; /* Capture is done in fragment-sized chunks, so we loop until we get all * that's available */ mLastReadable -= dstbuf.size(); std::lock_guard _{pulse_lock}; while(!dstbuf.empty()) { if(mCapBuffer.empty()) { if(UNLIKELY(!mDevice->Connected.load(std::memory_order_acquire))) break; const pa_stream_state_t state{pa_stream_get_state(mStream)}; if(UNLIKELY(!PA_STREAM_IS_GOOD(state))) { aluHandleDisconnect(mDevice, "Bad capture state: %u", state); break; } const void *capbuf; size_t caplen; if(UNLIKELY(pa_stream_peek(mStream, &capbuf, &caplen) < 0)) { aluHandleDisconnect(mDevice, "Failed retrieving capture samples: %s", pa_strerror(pa_context_errno(mContext))); break; } if(caplen == 0) break; if(UNLIKELY(!capbuf)) mCapLen = -static_cast(caplen); else mCapLen = static_cast(caplen); mCapBuffer = {static_cast(capbuf), caplen}; } const size_t rem{minz(dstbuf.size(), mCapBuffer.size())}; if(UNLIKELY(mCapLen < 0)) std::fill_n(dstbuf.begin(), rem, mSilentVal); else std::copy_n(mCapBuffer.begin(), rem, dstbuf.begin()); dstbuf = dstbuf.subspan(rem); mCapBuffer = mCapBuffer.subspan(rem); if(mCapBuffer.empty()) { pa_stream_drop(mStream); mCapLen = 0; } } if(!dstbuf.empty()) std::fill(dstbuf.begin(), dstbuf.end(), mSilentVal); return ALC_NO_ERROR; } ALCuint PulseCapture::availableSamples() { size_t readable{mCapBuffer.size()}; if(mDevice->Connected.load(std::memory_order_acquire)) { std::lock_guard _{pulse_lock}; size_t got{pa_stream_readable_size(mStream)}; if(static_cast(got) < 0) { ERR("pa_stream_readable_size() failed: %s\n", pa_strerror(got)); aluHandleDisconnect(mDevice, "Failed getting readable size: %s", pa_strerror(got)); } else { const auto caplen = static_cast(std::abs(mCapLen)); if(got > caplen) readable += got - caplen; } } readable = std::min(readable, std::numeric_limits::max()); mLastReadable = std::max(mLastReadable, static_cast(readable)); return mLastReadable / pa_frame_size(&mSpec); } ClockLatency PulseCapture::getClockLatency() { ClockLatency ret; pa_usec_t latency; int neg, err; { std::lock_guard _{pulse_lock}; ret.ClockTime = GetDeviceClockTime(mDevice); err = pa_stream_get_latency(mStream, &latency, &neg); } if(UNLIKELY(err != 0)) { ERR("Failed to get stream latency: 0x%x\n", err); latency = 0; neg = 0; } else if(UNLIKELY(neg)) latency = 0; ret.Latency = std::chrono::microseconds{latency}; return ret; } void PulseCapture::lock() { pulse_lock.lock(); } void PulseCapture::unlock() { pulse_lock.unlock(); } } // namespace bool PulseBackendFactory::init() { #ifdef HAVE_DYNLOAD if(!pulse_handle) { bool ret{true}; std::string missing_funcs; #ifdef _WIN32 #define PALIB "libpulse-0.dll" #elif defined(__APPLE__) && defined(__MACH__) #define PALIB "libpulse.0.dylib" #else #define PALIB "libpulse.so.0" #endif pulse_handle = LoadLib(PALIB); if(!pulse_handle) { WARN("Failed to load %s\n", PALIB); return false; } #define LOAD_FUNC(x) do { \ p##x = reinterpret_cast(GetSymbol(pulse_handle, #x)); \ if(!(p##x)) { \ ret = false; \ missing_funcs += "\n" #x; \ } \ } while(0) PULSE_FUNCS(LOAD_FUNC) #undef LOAD_FUNC if(!ret) { WARN("Missing expected functions:%s\n", missing_funcs.c_str()); CloseLib(pulse_handle); pulse_handle = nullptr; return false; } } #endif /* HAVE_DYNLOAD */ pulse_ctx_flags = PA_CONTEXT_NOFLAGS; if(!GetConfigValueBool(nullptr, "pulse", "spawn-server", 1)) pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN; try { std::unique_lock plock{pulse_lock}; pa_context *context{connect_context(plock)}; pa_context_disconnect(context); pa_context_unref(context); return true; } catch(...) { return false; } } bool PulseBackendFactory::querySupport(BackendType type) { return type == BackendType::Playback || type == BackendType::Capture; } void PulseBackendFactory::probe(DevProbe type, std::string *outnames) { auto add_device = [outnames](const DevMap &entry) -> void { /* +1 to also append the null char (to ensure a null-separated list and * double-null terminated list). */ outnames->append(entry.name.c_str(), entry.name.length()+1); }; switch(type) { case DevProbe::Playback: probePlaybackDevices(); std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device); break; case DevProbe::Capture: probeCaptureDevices(); std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device); break; } } BackendPtr PulseBackendFactory::createBackend(ALCdevice *device, BackendType type) { if(type == BackendType::Playback) return BackendPtr{new PulsePlayback{device}}; if(type == BackendType::Capture) return BackendPtr{new PulseCapture{device}}; return nullptr; } BackendFactory &PulseBackendFactory::getFactory() { static PulseBackendFactory factory{}; return factory; }