/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "backends/wave.h" #include #include #include #include #include #include #include #include "alMain.h" #include "alu.h" #include "alconfig.h" #include "compat.h" namespace { using std::chrono::seconds; using std::chrono::milliseconds; using std::chrono::nanoseconds; constexpr ALCchar waveDevice[] = "Wave File Writer"; constexpr ALubyte SUBTYPE_PCM[]{ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71 }; constexpr ALubyte SUBTYPE_FLOAT[]{ 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71 }; constexpr ALubyte SUBTYPE_BFORMAT_PCM[]{ 0x01, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1, 0xca, 0x00, 0x00, 0x00 }; constexpr ALubyte SUBTYPE_BFORMAT_FLOAT[]{ 0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1, 0xca, 0x00, 0x00, 0x00 }; void fwrite16le(ALushort val, FILE *f) { ALubyte data[2]{ static_cast(val&0xff), static_cast((val>>8)&0xff) }; fwrite(data, 1, 2, f); } void fwrite32le(ALuint val, FILE *f) { ALubyte data[4]{ static_cast(val&0xff), static_cast((val>>8)&0xff), static_cast((val>>16)&0xff), static_cast((val>>24)&0xff) }; fwrite(data, 1, 4, f); } struct ALCwaveBackend final : public ALCbackend { FILE *mFile; long mDataStart; std::vector mBuffer; ATOMIC(ALenum) killNow; std::thread thread; }; int ALCwaveBackend_mixerProc(ALCwaveBackend *self); void ALCwaveBackend_Construct(ALCwaveBackend *self, ALCdevice *device); void ALCwaveBackend_Destruct(ALCwaveBackend *self); ALCenum ALCwaveBackend_open(ALCwaveBackend *self, const ALCchar *name); ALCboolean ALCwaveBackend_reset(ALCwaveBackend *self); ALCboolean ALCwaveBackend_start(ALCwaveBackend *self); void ALCwaveBackend_stop(ALCwaveBackend *self); DECLARE_FORWARD2(ALCwaveBackend, ALCbackend, ALCenum, captureSamples, void*, ALCuint) DECLARE_FORWARD(ALCwaveBackend, ALCbackend, ALCuint, availableSamples) DECLARE_FORWARD(ALCwaveBackend, ALCbackend, ClockLatency, getClockLatency) DECLARE_FORWARD(ALCwaveBackend, ALCbackend, void, lock) DECLARE_FORWARD(ALCwaveBackend, ALCbackend, void, unlock) DECLARE_DEFAULT_ALLOCATORS(ALCwaveBackend) DEFINE_ALCBACKEND_VTABLE(ALCwaveBackend); void ALCwaveBackend_Construct(ALCwaveBackend *self, ALCdevice *device) { new (self) ALCwaveBackend{}; ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device); SET_VTABLE2(ALCwaveBackend, ALCbackend, self); self->mFile = nullptr; self->mDataStart = -1; ATOMIC_INIT(&self->killNow, AL_TRUE); } void ALCwaveBackend_Destruct(ALCwaveBackend *self) { if(self->mFile) fclose(self->mFile); self->mFile = nullptr; ALCbackend_Destruct(STATIC_CAST(ALCbackend, self)); self->~ALCwaveBackend(); } int ALCwaveBackend_mixerProc(ALCwaveBackend *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; const milliseconds restTime{device->UpdateSize*1000/device->Frequency / 2}; althrd_setname(MIXER_THREAD_NAME); ALsizei frameSize{FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->AmbiOrder)}; ALint64 done{0}; auto start = std::chrono::steady_clock::now(); while(!ATOMIC_LOAD(&self->killNow, almemory_order_acquire) && ATOMIC_LOAD(&device->Connected, almemory_order_acquire)) { auto now = std::chrono::steady_clock::now(); /* This converts from nanoseconds to nanosamples, then to samples. */ ALint64 avail{std::chrono::duration_cast((now-start) * device->Frequency).count()}; if(avail-done < device->UpdateSize) { std::this_thread::sleep_for(restTime); continue; } while(avail-done >= device->UpdateSize) { ALCwaveBackend_lock(self); aluMixData(device, self->mBuffer.data(), device->UpdateSize); ALCwaveBackend_unlock(self); done += device->UpdateSize; if(!IS_LITTLE_ENDIAN) { ALuint bytesize = BytesFromDevFmt(device->FmtType); ALuint i; if(bytesize == 2) { ALushort *samples = reinterpret_cast(self->mBuffer.data()); ALuint len = self->mBuffer.size() / 2; for(i = 0;i < len;i++) { ALushort samp = samples[i]; samples[i] = (samp>>8) | (samp<<8); } } else if(bytesize == 4) { ALuint *samples = reinterpret_cast(self->mBuffer.data()); ALuint len = self->mBuffer.size() / 4; for(i = 0;i < len;i++) { ALuint samp = samples[i]; samples[i] = (samp>>24) | ((samp>>8)&0x0000ff00) | ((samp<<8)&0x00ff0000) | (samp<<24); } } } size_t fs{fwrite(self->mBuffer.data(), frameSize, device->UpdateSize, self->mFile)}; (void)fs; if(ferror(self->mFile)) { ERR("Error writing to file\n"); ALCwaveBackend_lock(self); aluHandleDisconnect(device, "Failed to write playback samples"); ALCwaveBackend_unlock(self); break; } } /* For every completed second, increment the start time and reduce the * samples done. This prevents the difference between the start time * and current time from growing too large, while maintaining the * correct number of samples to render. */ if(done >= device->Frequency) { seconds s{done/device->Frequency}; start += s; done -= device->Frequency*s.count(); } } return 0; } ALCenum ALCwaveBackend_open(ALCwaveBackend *self, const ALCchar *name) { const char *fname{GetConfigValue(nullptr, "wave", "file", "")}; if(!fname[0]) return ALC_INVALID_VALUE; if(!name) name = waveDevice; else if(strcmp(name, waveDevice) != 0) return ALC_INVALID_VALUE; #ifdef _WIN32 { std::wstring wname = utf8_to_wstr(fname); self->mFile = _wfopen(wname.c_str(), L"wb"); } #else self->mFile = fopen(fname, "wb"); #endif if(!self->mFile) { ERR("Could not open file '%s': %s\n", fname, strerror(errno)); return ALC_INVALID_VALUE; } ALCdevice *device{STATIC_CAST(ALCbackend, self)->mDevice}; al_free(device->DeviceName); device->DeviceName = alstrdup(name); return ALC_NO_ERROR; } ALCboolean ALCwaveBackend_reset(ALCwaveBackend *self) { ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice; ALuint channels=0, bits=0, chanmask=0; int isbformat = 0; size_t val; fseek(self->mFile, 0, SEEK_SET); clearerr(self->mFile); if(GetConfigValueBool(nullptr, "wave", "bformat", 0)) { device->FmtChans = DevFmtAmbi3D; device->AmbiOrder = 1; } switch(device->FmtType) { case DevFmtByte: device->FmtType = DevFmtUByte; break; case DevFmtUShort: device->FmtType = DevFmtShort; break; case DevFmtUInt: device->FmtType = DevFmtInt; break; case DevFmtUByte: case DevFmtShort: case DevFmtInt: case DevFmtFloat: break; } switch(device->FmtChans) { case DevFmtMono: chanmask = 0x04; break; case DevFmtStereo: chanmask = 0x01 | 0x02; break; case DevFmtQuad: chanmask = 0x01 | 0x02 | 0x10 | 0x20; break; case DevFmtX51: chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x200 | 0x400; break; case DevFmtX51Rear: chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x010 | 0x020; break; case DevFmtX61: chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x100 | 0x200 | 0x400; break; case DevFmtX71: chanmask = 0x01 | 0x02 | 0x04 | 0x08 | 0x010 | 0x020 | 0x200 | 0x400; break; case DevFmtAmbi3D: /* .amb output requires FuMa */ device->AmbiLayout = AmbiLayout_FuMa; device->AmbiScale = AmbiNorm_FuMa; isbformat = 1; chanmask = 0; break; } bits = BytesFromDevFmt(device->FmtType) * 8; channels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder); fputs("RIFF", self->mFile); fwrite32le(0xFFFFFFFF, self->mFile); // 'RIFF' header len; filled in at close fputs("WAVE", self->mFile); fputs("fmt ", self->mFile); fwrite32le(40, self->mFile); // 'fmt ' header len; 40 bytes for EXTENSIBLE // 16-bit val, format type id (extensible: 0xFFFE) fwrite16le(0xFFFE, self->mFile); // 16-bit val, channel count fwrite16le(channels, self->mFile); // 32-bit val, frequency fwrite32le(device->Frequency, self->mFile); // 32-bit val, bytes per second fwrite32le(device->Frequency * channels * bits / 8, self->mFile); // 16-bit val, frame size fwrite16le(channels * bits / 8, self->mFile); // 16-bit val, bits per sample fwrite16le(bits, self->mFile); // 16-bit val, extra byte count fwrite16le(22, self->mFile); // 16-bit val, valid bits per sample fwrite16le(bits, self->mFile); // 32-bit val, channel mask fwrite32le(chanmask, self->mFile); // 16 byte GUID, sub-type format val = fwrite((device->FmtType == DevFmtFloat) ? (isbformat ? SUBTYPE_BFORMAT_FLOAT : SUBTYPE_FLOAT) : (isbformat ? SUBTYPE_BFORMAT_PCM : SUBTYPE_PCM), 1, 16, self->mFile); (void)val; fputs("data", self->mFile); fwrite32le(0xFFFFFFFF, self->mFile); // 'data' header len; filled in at close if(ferror(self->mFile)) { ERR("Error writing header: %s\n", strerror(errno)); return ALC_FALSE; } self->mDataStart = ftell(self->mFile); SetDefaultWFXChannelOrder(device); ALuint bufsize{FrameSizeFromDevFmt( device->FmtChans, device->FmtType, device->AmbiOrder ) * device->UpdateSize}; self->mBuffer.resize(bufsize); return ALC_TRUE; } ALCboolean ALCwaveBackend_start(ALCwaveBackend *self) { try { ATOMIC_STORE(&self->killNow, AL_FALSE, almemory_order_release); self->thread = std::thread(ALCwaveBackend_mixerProc, self); return ALC_TRUE; } catch(std::exception& e) { ERR("Failed to start mixing thread: %s\n", e.what()); } catch(...) { } return ALC_FALSE; } void ALCwaveBackend_stop(ALCwaveBackend *self) { if(ATOMIC_EXCHANGE(&self->killNow, AL_TRUE, almemory_order_acq_rel) || !self->thread.joinable()) return; self->thread.join(); long size{ftell(self->mFile)}; if(size > 0) { long dataLen{size - self->mDataStart}; if(fseek(self->mFile, self->mDataStart-4, SEEK_SET) == 0) fwrite32le(dataLen, self->mFile); // 'data' header len if(fseek(self->mFile, 4, SEEK_SET) == 0) fwrite32le(size-8, self->mFile); // 'WAVE' header len } } } // namespace bool WaveBackendFactory::init() { return true; } bool WaveBackendFactory::querySupport(ALCbackend_Type type) { return (type == ALCbackend_Playback); } void WaveBackendFactory::probe(enum DevProbe type, std::string *outnames) { switch(type) { case ALL_DEVICE_PROBE: /* Includes null char. */ outnames->append(waveDevice, sizeof(waveDevice)); break; case CAPTURE_DEVICE_PROBE: break; } } ALCbackend *WaveBackendFactory::createBackend(ALCdevice *device, ALCbackend_Type type) { if(type == ALCbackend_Playback) { ALCwaveBackend *backend; NEW_OBJ(backend, ALCwaveBackend)(device); if(!backend) return nullptr; return STATIC_CAST(ALCbackend, backend); } return nullptr; } BackendFactory &WaveBackendFactory::getFactory() { static WaveBackendFactory factory{}; return factory; }