#include "config.h" #include "bformatdec.h" #include "ambdec.h" #include "mixer_defs.h" #include "alu.h" #include "bool.h" #include "threads.h" #include "almalloc.h" void bandsplit_init(BandSplitter *splitter, ALfloat f0norm) { ALfloat w = f0norm * F_TAU; ALfloat cw = cosf(w); if(cw > FLT_EPSILON) splitter->coeff = (sinf(w) - 1.0f) / cw; else splitter->coeff = cw * -0.5f; splitter->lp_z1 = 0.0f; splitter->lp_z2 = 0.0f; splitter->hp_z1 = 0.0f; } void bandsplit_clear(BandSplitter *splitter) { splitter->lp_z1 = 0.0f; splitter->lp_z2 = 0.0f; splitter->hp_z1 = 0.0f; } void bandsplit_process(BandSplitter *splitter, ALfloat *restrict hpout, ALfloat *restrict lpout, const ALfloat *input, ALsizei count) { ALfloat coeff, d, x; ALfloat z1, z2; ALsizei i; coeff = splitter->coeff*0.5f + 0.5f; z1 = splitter->lp_z1; z2 = splitter->lp_z2; for(i = 0;i < count;i++) { x = input[i]; d = (x - z1) * coeff; x = z1 + d; z1 = x + d; d = (x - z2) * coeff; x = z2 + d; z2 = x + d; lpout[i] = x; } splitter->lp_z1 = z1; splitter->lp_z2 = z2; coeff = splitter->coeff; z1 = splitter->hp_z1; for(i = 0;i < count;i++) { x = input[i]; d = x - coeff*z1; x = z1 + coeff*d; z1 = d; hpout[i] = x - lpout[i]; } splitter->hp_z1 = z1; } void splitterap_init(SplitterAllpass *splitter, ALfloat f0norm) { ALfloat w = f0norm * F_TAU; ALfloat cw = cosf(w); if(cw > FLT_EPSILON) splitter->coeff = (sinf(w) - 1.0f) / cw; else splitter->coeff = cw * -0.5f; splitter->z1 = 0.0f; } void splitterap_clear(SplitterAllpass *splitter) { splitter->z1 = 0.0f; } void splitterap_process(SplitterAllpass *splitter, ALfloat *restrict samples, ALsizei count) { ALfloat coeff, d, x; ALfloat z1; ALsizei i; coeff = splitter->coeff; z1 = splitter->z1; for(i = 0;i < count;i++) { x = samples[i]; d = x - coeff*z1; x = z1 + coeff*d; z1 = d; samples[i] = x; } splitter->z1 = z1; } static const ALfloat UnitScale[MAX_AMBI_COEFFS] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }; static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = { 1.000000000f, /* ACN 0 (W), sqrt(1) */ 1.732050808f, /* ACN 1 (Y), sqrt(3) */ 1.732050808f, /* ACN 2 (Z), sqrt(3) */ 1.732050808f, /* ACN 3 (X), sqrt(3) */ 2.236067978f, /* ACN 4 (V), sqrt(5) */ 2.236067978f, /* ACN 5 (T), sqrt(5) */ 2.236067978f, /* ACN 6 (R), sqrt(5) */ 2.236067978f, /* ACN 7 (S), sqrt(5) */ 2.236067978f, /* ACN 8 (U), sqrt(5) */ 2.645751311f, /* ACN 9 (Q), sqrt(7) */ 2.645751311f, /* ACN 10 (O), sqrt(7) */ 2.645751311f, /* ACN 11 (M), sqrt(7) */ 2.645751311f, /* ACN 12 (K), sqrt(7) */ 2.645751311f, /* ACN 13 (L), sqrt(7) */ 2.645751311f, /* ACN 14 (N), sqrt(7) */ 2.645751311f, /* ACN 15 (P), sqrt(7) */ }; static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = { 1.414213562f, /* ACN 0 (W), sqrt(2) */ 1.732050808f, /* ACN 1 (Y), sqrt(3) */ 1.732050808f, /* ACN 2 (Z), sqrt(3) */ 1.732050808f, /* ACN 3 (X), sqrt(3) */ 1.936491673f, /* ACN 4 (V), sqrt(15)/2 */ 1.936491673f, /* ACN 5 (T), sqrt(15)/2 */ 2.236067978f, /* ACN 6 (R), sqrt(5) */ 1.936491673f, /* ACN 7 (S), sqrt(15)/2 */ 1.936491673f, /* ACN 8 (U), sqrt(15)/2 */ 2.091650066f, /* ACN 9 (Q), sqrt(35/8) */ 1.972026594f, /* ACN 10 (O), sqrt(35)/3 */ 2.231093404f, /* ACN 11 (M), sqrt(224/45) */ 2.645751311f, /* ACN 12 (K), sqrt(7) */ 2.231093404f, /* ACN 13 (L), sqrt(224/45) */ 1.972026594f, /* ACN 14 (N), sqrt(35)/3 */ 2.091650066f, /* ACN 15 (P), sqrt(35/8) */ }; enum FreqBand { FB_HighFreq, FB_LowFreq, FB_Max }; /* These points are in AL coordinates! */ static const ALfloat Ambi3DPoints[8][3] = { { -0.577350269f, 0.577350269f, -0.577350269f }, { 0.577350269f, 0.577350269f, -0.577350269f }, { -0.577350269f, 0.577350269f, 0.577350269f }, { 0.577350269f, 0.577350269f, 0.577350269f }, { -0.577350269f, -0.577350269f, -0.577350269f }, { 0.577350269f, -0.577350269f, -0.577350269f }, { -0.577350269f, -0.577350269f, 0.577350269f }, { 0.577350269f, -0.577350269f, 0.577350269f }, }; static const ALfloat Ambi3DDecoder[8][FB_Max][MAX_AMBI_COEFFS] = { { { 0.25f, 0.1443375672f, 0.1443375672f, 0.1443375672f }, { 0.125f, 0.125f, 0.125f, 0.125f } }, { { 0.25f, -0.1443375672f, 0.1443375672f, 0.1443375672f }, { 0.125f, -0.125f, 0.125f, 0.125f } }, { { 0.25f, 0.1443375672f, 0.1443375672f, -0.1443375672f }, { 0.125f, 0.125f, 0.125f, -0.125f } }, { { 0.25f, -0.1443375672f, 0.1443375672f, -0.1443375672f }, { 0.125f, -0.125f, 0.125f, -0.125f } }, { { 0.25f, 0.1443375672f, -0.1443375672f, 0.1443375672f }, { 0.125f, 0.125f, -0.125f, 0.125f } }, { { 0.25f, -0.1443375672f, -0.1443375672f, 0.1443375672f }, { 0.125f, -0.125f, -0.125f, 0.125f } }, { { 0.25f, 0.1443375672f, -0.1443375672f, -0.1443375672f }, { 0.125f, 0.125f, -0.125f, -0.125f } }, { { 0.25f, -0.1443375672f, -0.1443375672f, -0.1443375672f }, { 0.125f, -0.125f, -0.125f, -0.125f } }, }; static RowMixerFunc MixMatrixRow = MixRow_C; static alonce_flag bformatdec_inited = AL_ONCE_FLAG_INIT; static void init_bformatdec(void) { MixMatrixRow = SelectRowMixer(); } /* NOTE: BandSplitter filters are unused with single-band decoding */ typedef struct BFormatDec { ALboolean Enabled[MAX_OUTPUT_CHANNELS]; union { alignas(16) ALfloat Dual[MAX_OUTPUT_CHANNELS][FB_Max][MAX_AMBI_COEFFS]; alignas(16) ALfloat Single[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS]; } Matrix; BandSplitter XOver[MAX_AMBI_COEFFS]; ALfloat (*Samples)[BUFFERSIZE]; /* These two alias into Samples */ ALfloat (*SamplesHF)[BUFFERSIZE]; ALfloat (*SamplesLF)[BUFFERSIZE]; alignas(16) ALfloat ChannelMix[BUFFERSIZE]; struct { BandSplitter XOver; ALfloat Gains[FB_Max]; } UpSampler[4]; ALsizei NumChannels; ALboolean DualBand; } BFormatDec; BFormatDec *bformatdec_alloc() { alcall_once(&bformatdec_inited, init_bformatdec); return al_calloc(16, sizeof(BFormatDec)); } void bformatdec_free(BFormatDec *dec) { if(dec) { al_free(dec->Samples); dec->Samples = NULL; dec->SamplesHF = NULL; dec->SamplesLF = NULL; memset(dec, 0, sizeof(*dec)); al_free(dec); } } void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALsizei chancount, ALuint srate, const ALsizei chanmap[MAX_OUTPUT_CHANNELS]) { static const ALsizei map2DTo3D[MAX_AMBI2D_COEFFS] = { 0, 1, 3, 4, 8, 9, 15 }; const ALfloat *coeff_scale = UnitScale; bool periphonic; ALfloat ratio; ALsizei i; al_free(dec->Samples); dec->Samples = NULL; dec->SamplesHF = NULL; dec->SamplesLF = NULL; dec->NumChannels = chancount; dec->Samples = al_calloc(16, dec->NumChannels*2 * sizeof(dec->Samples[0])); dec->SamplesHF = dec->Samples; dec->SamplesLF = dec->SamplesHF + dec->NumChannels; for(i = 0;i < MAX_OUTPUT_CHANNELS;i++) dec->Enabled[i] = AL_FALSE; for(i = 0;i < conf->NumSpeakers;i++) dec->Enabled[chanmap[i]] = AL_TRUE; if(conf->CoeffScale == ADS_SN3D) coeff_scale = SN3D2N3DScale; else if(conf->CoeffScale == ADS_FuMa) coeff_scale = FuMa2N3DScale; memset(dec->UpSampler, 0, sizeof(dec->UpSampler)); ratio = 400.0f / (ALfloat)srate; for(i = 0;i < 4;i++) bandsplit_init(&dec->UpSampler[i].XOver, ratio); if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { periphonic = true; dec->UpSampler[0].Gains[FB_HighFreq] = (dec->NumChannels > 9) ? W_SCALE3D_THIRD : (dec->NumChannels > 4) ? W_SCALE3D_SECOND : 1.0f; dec->UpSampler[0].Gains[FB_LowFreq] = 1.0f; for(i = 1;i < 4;i++) { dec->UpSampler[i].Gains[FB_HighFreq] = (dec->NumChannels > 9) ? XYZ_SCALE3D_THIRD : (dec->NumChannels > 4) ? XYZ_SCALE3D_SECOND : 1.0f; dec->UpSampler[i].Gains[FB_LowFreq] = 1.0f; } } else { periphonic = false; dec->UpSampler[0].Gains[FB_HighFreq] = (dec->NumChannels > 5) ? W_SCALE2D_THIRD : (dec->NumChannels > 3) ? W_SCALE2D_SECOND : 1.0f; dec->UpSampler[0].Gains[FB_LowFreq] = 1.0f; for(i = 1;i < 3;i++) { dec->UpSampler[i].Gains[FB_HighFreq] = (dec->NumChannels > 5) ? XYZ_SCALE2D_THIRD : (dec->NumChannels > 3) ? XYZ_SCALE2D_SECOND : 1.0f; dec->UpSampler[i].Gains[FB_LowFreq] = 1.0f; } dec->UpSampler[3].Gains[FB_HighFreq] = 0.0f; dec->UpSampler[3].Gains[FB_LowFreq] = 0.0f; } memset(&dec->Matrix, 0, sizeof(dec->Matrix)); if(conf->FreqBands == 1) { dec->DualBand = AL_FALSE; for(i = 0;i < conf->NumSpeakers;i++) { ALsizei chan = chanmap[i]; ALfloat gain; ALsizei j, k; if(!periphonic) { for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++) { ALsizei l = map2DTo3D[j]; if(j == 0) gain = conf->HFOrderGain[0]; else if(j == 1) gain = conf->HFOrderGain[1]; else if(j == 3) gain = conf->HFOrderGain[2]; else if(j == 5) gain = conf->HFOrderGain[3]; if((conf->ChanMask&(1<Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[l] * gain; } } else { for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++) { if(j == 0) gain = conf->HFOrderGain[0]; else if(j == 1) gain = conf->HFOrderGain[1]; else if(j == 4) gain = conf->HFOrderGain[2]; else if(j == 9) gain = conf->HFOrderGain[3]; if((conf->ChanMask&(1<Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] * gain; } } } } else { dec->DualBand = AL_TRUE; ratio = conf->XOverFreq / (ALfloat)srate; for(i = 0;i < MAX_AMBI_COEFFS;i++) bandsplit_init(&dec->XOver[i], ratio); ratio = powf(10.0f, conf->XOverRatio / 40.0f); for(i = 0;i < conf->NumSpeakers;i++) { ALsizei chan = chanmap[i]; ALfloat gain; ALsizei j, k; if(!periphonic) { for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++) { ALsizei l = map2DTo3D[j]; if(j == 0) gain = conf->HFOrderGain[0] * ratio; else if(j == 1) gain = conf->HFOrderGain[1] * ratio; else if(j == 3) gain = conf->HFOrderGain[2] * ratio; else if(j == 5) gain = conf->HFOrderGain[3] * ratio; if((conf->ChanMask&(1<Matrix.Dual[chan][FB_HighFreq][j] = conf->HFMatrix[i][k++] / coeff_scale[l] * gain; } for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++) { ALsizei l = map2DTo3D[j]; if(j == 0) gain = conf->LFOrderGain[0] / ratio; else if(j == 1) gain = conf->LFOrderGain[1] / ratio; else if(j == 3) gain = conf->LFOrderGain[2] / ratio; else if(j == 5) gain = conf->LFOrderGain[3] / ratio; if((conf->ChanMask&(1<Matrix.Dual[chan][FB_LowFreq][j] = conf->LFMatrix[i][k++] / coeff_scale[l] * gain; } } else { for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++) { if(j == 0) gain = conf->HFOrderGain[0] * ratio; else if(j == 1) gain = conf->HFOrderGain[1] * ratio; else if(j == 4) gain = conf->HFOrderGain[2] * ratio; else if(j == 9) gain = conf->HFOrderGain[3] * ratio; if((conf->ChanMask&(1<Matrix.Dual[chan][FB_HighFreq][j] = conf->HFMatrix[i][k++] / coeff_scale[j] * gain; } for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++) { if(j == 0) gain = conf->LFOrderGain[0] / ratio; else if(j == 1) gain = conf->LFOrderGain[1] / ratio; else if(j == 4) gain = conf->LFOrderGain[2] / ratio; else if(j == 9) gain = conf->LFOrderGain[3] / ratio; if((conf->ChanMask&(1<Matrix.Dual[chan][FB_LowFreq][j] = conf->LFMatrix[i][k++] / coeff_scale[j] * gain; } } } } } void bformatdec_process(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*restrict InSamples)[BUFFERSIZE], ALsizei SamplesToDo) { ALsizei chan, i; OutBuffer = ASSUME_ALIGNED(OutBuffer, 16); if(dec->DualBand) { for(i = 0;i < dec->NumChannels;i++) bandsplit_process(&dec->XOver[i], dec->SamplesHF[i], dec->SamplesLF[i], InSamples[i], SamplesToDo); for(chan = 0;chan < OutChannels;chan++) { if(!dec->Enabled[chan]) continue; memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat)); MixMatrixRow(dec->ChannelMix, dec->Matrix.Dual[chan][FB_HighFreq], dec->SamplesHF, dec->NumChannels, 0, SamplesToDo ); MixMatrixRow(dec->ChannelMix, dec->Matrix.Dual[chan][FB_LowFreq], dec->SamplesLF, dec->NumChannels, 0, SamplesToDo ); for(i = 0;i < SamplesToDo;i++) OutBuffer[chan][i] += dec->ChannelMix[i]; } } else { for(chan = 0;chan < OutChannels;chan++) { if(!dec->Enabled[chan]) continue; memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat)); MixMatrixRow(dec->ChannelMix, dec->Matrix.Single[chan], InSamples, dec->NumChannels, 0, SamplesToDo); for(i = 0;i < SamplesToDo;i++) OutBuffer[chan][i] += dec->ChannelMix[i]; } } } void bformatdec_upSample(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], const ALfloat (*restrict InSamples)[BUFFERSIZE], ALsizei InChannels, ALsizei SamplesToDo) { ALsizei i; /* This up-sampler leverages the differences observed in dual-band second- * and third-order decoder matrices compared to first-order. For the same * output channel configuration, the low-frequency matrix has identical * coefficients in the shared input channels, while the high-frequency * matrix has extra scalars applied to the W channel and X/Y/Z channels. * Mixing the first-order content into the higher-order stream with the * appropriate counter-scales applied to the HF response results in the * subsequent higher-order decode generating the same response as a first- * order decode. */ for(i = 0;i < InChannels;i++) { /* First, split the first-order components into low and high frequency * bands. */ bandsplit_process(&dec->UpSampler[i].XOver, dec->Samples[FB_HighFreq], dec->Samples[FB_LowFreq], InSamples[i], SamplesToDo ); /* Now write each band to the output. */ MixMatrixRow(OutBuffer[i], dec->UpSampler[i].Gains, dec->Samples, FB_Max, 0, SamplesToDo ); } } #define INVALID_UPSAMPLE_INDEX INT_MAX static ALsizei GetACNIndex(const BFChannelConfig *chans, ALsizei numchans, ALsizei acn) { ALsizei i; for(i = 0;i < numchans;i++) { if(chans[i].Index == acn) return i; } return INVALID_UPSAMPLE_INDEX; } #define GetChannelForACN(b, a) GetACNIndex((b).Ambi.Map, (b).NumChannels, (a)) typedef struct AmbiUpsampler { alignas(16) ALfloat Samples[FB_Max][BUFFERSIZE]; BandSplitter XOver[4]; ALfloat Gains[4][MAX_OUTPUT_CHANNELS][FB_Max]; } AmbiUpsampler; AmbiUpsampler *ambiup_alloc() { alcall_once(&bformatdec_inited, init_bformatdec); return al_calloc(16, sizeof(AmbiUpsampler)); } void ambiup_free(struct AmbiUpsampler *ambiup) { al_free(ambiup); } void ambiup_reset(struct AmbiUpsampler *ambiup, const ALCdevice *device) { ALfloat ratio; ALsizei i; ratio = 400.0f / (ALfloat)device->Frequency; for(i = 0;i < 4;i++) bandsplit_init(&ambiup->XOver[i], ratio); memset(ambiup->Gains, 0, sizeof(ambiup->Gains)); if(device->Dry.CoeffCount > 0) { ALfloat encgains[8][MAX_OUTPUT_CHANNELS]; ALsizei j; size_t k; for(k = 0;k < COUNTOF(Ambi3DPoints);k++) { ALfloat coeffs[MAX_AMBI_COEFFS] = { 0.0f }; CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs); ComputeDryPanGains(&device->Dry, coeffs, 1.0f, encgains[k]); } /* Combine the matrices that do the in->virt and virt->out conversions * so we get a single in->out conversion. NOTE: the Encoder matrix * (encgains) and output are transposed, so the input channels line up * with the rows and the output channels line up with the columns. */ for(i = 0;i < 4;i++) { for(j = 0;j < device->Dry.NumChannels;j++) { ALfloat hfgain=0.0f, lfgain=0.0f; for(k = 0;k < COUNTOF(Ambi3DDecoder);k++) { hfgain += Ambi3DDecoder[k][FB_HighFreq][i]*encgains[k][j]; lfgain += Ambi3DDecoder[k][FB_LowFreq][i]*encgains[k][j]; } ambiup->Gains[i][j][FB_HighFreq] = hfgain; ambiup->Gains[i][j][FB_LowFreq] = lfgain; } } } else { /* Assumes full 3D/periphonic on the input and output mixes! */ ALfloat w_scale = (device->Dry.NumChannels > 9) ? W_SCALE3D_THIRD : (device->Dry.NumChannels > 4) ? W_SCALE3D_SECOND : 1.0f; ALfloat xyz_scale = (device->Dry.NumChannels > 9) ? XYZ_SCALE3D_THIRD : (device->Dry.NumChannels > 4) ? XYZ_SCALE3D_SECOND : 1.0f; for(i = 0;i < 4;i++) { ALsizei index = GetChannelForACN(device->Dry, i); if(index != INVALID_UPSAMPLE_INDEX) { ALfloat scale = device->Dry.Ambi.Map[index].Scale; ambiup->Gains[i][index][FB_HighFreq] = scale * ((i==0) ? w_scale : xyz_scale); ambiup->Gains[i][index][FB_LowFreq] = scale; } } } } void ambiup_process(struct AmbiUpsampler *ambiup, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*restrict InSamples)[BUFFERSIZE], ALsizei SamplesToDo) { ALsizei i, j; for(i = 0;i < 4;i++) { bandsplit_process(&ambiup->XOver[i], ambiup->Samples[FB_HighFreq], ambiup->Samples[FB_LowFreq], InSamples[i], SamplesToDo ); for(j = 0;j < OutChannels;j++) MixMatrixRow(OutBuffer[j], ambiup->Gains[i][j], ambiup->Samples, FB_Max, 0, SamplesToDo ); } }