#include "config.h" #include #include #include #include #include #include #include "bformatdec.h" #include "ambdec.h" #include "filters/splitter.h" #include "alu.h" #include "threads.h" #include "almalloc.h" namespace { using namespace std::placeholders; #define HF_BAND 0 #define LF_BAND 1 static_assert(BFormatDec::sNumBands == 2, "Unexpected BFormatDec::sNumBands"); constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_ORDER+1] = { 1.00000000e+00f, 1.00000000e+00f }; constexpr ALfloat Ambi3DDecoderHFScale2O[MAX_AMBI_ORDER+1] = { 7.45355990e-01f, 1.00000000e+00f }; constexpr ALfloat Ambi3DDecoderHFScale3O[MAX_AMBI_ORDER+1] = { 5.89792205e-01f, 8.79693856e-01f }; inline auto GetDecoderHFScales(ALsizei order) noexcept -> const ALfloat(&)[MAX_AMBI_ORDER+1] { if(order >= 3) return Ambi3DDecoderHFScale3O; if(order == 2) return Ambi3DDecoderHFScale2O; return Ambi3DDecoderHFScale; } inline auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const std::array& { if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa; if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D; return AmbiScale::FromN3D; } } // namespace void BFormatDec::reset(const AmbDecConf *conf, bool allow_2band, ALsizei inchans, ALuint srate, const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS]) { mSamples.clear(); mSamplesHF = nullptr; mSamplesLF = nullptr; mMatrix = MatrixU{}; mDualBand = allow_2band && (conf->FreqBands == 2); if(!mDualBand) mSamples.resize(2); else { mSamples.resize(inchans * 2); mSamplesHF = mSamples.data(); mSamplesLF = mSamplesHF + inchans; } mNumChannels = inchans; mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->Speakers.size(), 0u, [](ALuint mask, const ALsizei &chan) noexcept -> ALuint { return mask | (1 << chan); } ); const ALfloat xover_norm{conf->XOverFreq / (float)srate}; const ALsizei out_order{ (conf->ChanMask > AMBI_3ORDER_MASK) ? 4 : (conf->ChanMask > AMBI_2ORDER_MASK) ? 3 : (conf->ChanMask > AMBI_1ORDER_MASK) ? 2 : 1}; { const ALfloat (&hfscales)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order); mUpsampler[0].Splitter.init(xover_norm); mUpsampler[0].Gains[HF_BAND] = Ambi3DDecoderHFScale[0] / hfscales[0]; mUpsampler[0].Gains[LF_BAND] = 1.0f; mUpsampler[1].Splitter.init(xover_norm); mUpsampler[1].Gains[HF_BAND] = Ambi3DDecoderHFScale[1] / hfscales[1]; mUpsampler[1].Gains[LF_BAND] = 1.0f; std::fill(std::begin(mUpsampler)+2, std::end(mUpsampler), mUpsampler[1]); } const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0}; const std::array &coeff_scale = GetAmbiScales(conf->CoeffScale); const ALsizei coeff_count{periphonic ? MAX_AMBI_COEFFS : MAX_AMBI2D_COEFFS}; if(!mDualBand) { for(size_t i{0u};i < conf->Speakers.size();i++) { ALfloat (&mtx)[MAX_AMBI_COEFFS] = mMatrix.Single[chanmap[i]]; for(ALsizei j{0},k{0};j < coeff_count;j++) { const ALsizei l{periphonic ? j : AmbiIndex::From2D[j]}; if(!(conf->ChanMask&(1<HFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->HFOrderGain[3] : (l>=4) ? conf->HFOrderGain[2] : (l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]); ++k; } } } else { mXOver[0].init(xover_norm); std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]); const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)}; for(size_t i{0u};i < conf->Speakers.size();i++) { ALfloat (&mtx)[sNumBands][MAX_AMBI_COEFFS] = mMatrix.Dual[chanmap[i]]; for(ALsizei j{0},k{0};j < coeff_count;j++) { const ALsizei l{periphonic ? j : AmbiIndex::From2D[j]}; if(!(conf->ChanMask&(1<HFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->HFOrderGain[3] : (l>=4) ? conf->HFOrderGain[2] : (l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]) * ratio; mtx[LF_BAND][j] = conf->LFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->LFOrderGain[3] : (l>=4) ? conf->LFOrderGain[2] : (l>=1) ? conf->LFOrderGain[1] : conf->LFOrderGain[0]) / ratio; ++k; } } } } void BFormatDec::reset(const ALsizei inchans, const ALfloat xover_norm, const ALsizei chancount, const ChannelDec (&chancoeffs)[MAX_OUTPUT_CHANNELS], const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS]) { mSamples.clear(); mSamplesHF = nullptr; mSamplesLF = nullptr; mMatrix = MatrixU{}; mDualBand = false; mSamples.resize(2); mNumChannels = inchans; mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+chancount, 0u, [](ALuint mask, const ALsizei &chan) noexcept -> ALuint { return mask | (1 << chan); } ); const ALsizei out_order{ (inchans > 7) ? 4 : (inchans > 5) ? 3 : (inchans > 3) ? 2 : 1}; { const ALfloat (&hfscales)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order); mUpsampler[0].Splitter.init(xover_norm); mUpsampler[0].Gains[HF_BAND] = Ambi3DDecoderHFScale[0] / hfscales[0]; mUpsampler[0].Gains[LF_BAND] = 1.0f; mUpsampler[1].Splitter.init(xover_norm); mUpsampler[1].Gains[HF_BAND] = Ambi3DDecoderHFScale[1] / hfscales[1]; mUpsampler[1].Gains[LF_BAND] = 1.0f; std::fill(std::begin(mUpsampler)+2, std::end(mUpsampler), mUpsampler[1]); mUpAllpass[0].init(xover_norm); std::fill(std::begin(mUpAllpass)+1, std::end(mUpAllpass), mUpAllpass[0]); } for(ALsizei i{0};i < chancount;i++) { const ALfloat (&coeffs)[MAX_AMBI_COEFFS] = chancoeffs[chanmap[i]]; ALfloat (&mtx)[MAX_AMBI_COEFFS] = mMatrix.Single[chanmap[i]]; std::copy_n(std::begin(coeffs), inchans, std::begin(mtx)); } } void BFormatDec::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei SamplesToDo) { ASSUME(OutChannels > 0); ASSUME(mNumChannels > 0); if(mDualBand) { for(ALsizei i{0};i < mNumChannels;i++) mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i], SamplesToDo); for(ALsizei chan{0};chan < OutChannels;chan++) { if(UNLIKELY(!(mEnabled&(1<(mSamplesHF[0]), mNumChannels, 0, SamplesToDo); MixRowSamples(OutBuffer[chan], mMatrix.Dual[chan][LF_BAND], &reinterpret_cast(mSamplesLF[0]), mNumChannels, 0, SamplesToDo); } } else { for(ALsizei chan{0};chan < OutChannels;chan++) { if(UNLIKELY(!(mEnabled&(1< 0); ASSUME(OutChannels > InChannels); /* This up-sampler leverages the differences observed in dual-band higher- * order decoder matrices compared to first-order. For the same output * channel configuration, the low-frequency matrix has identical * coefficients in the shared input channels, while the high-frequency * matrix has extra scalars applied to the W channel and X/Y/Z channels. * Mixing the first-order content into the higher-order stream, with the * appropriate counter-scales applied to the HF response, results in the * subsequent higher-order decode generating the same response as a first- * order decode. */ for(ALsizei i{0};i < InChannels;i++) { /* NOTE: Because we can't treat the first-order signal as completely * decorrelated from the existing output (it may contain the reverb, * echo, etc, portion) phase interference is a possibility if not kept * coherent. As such, we need to apply an all-pass on the existing * output so that it stays aligned with the upsampled signal. */ mUpAllpass[i].process(OutBuffer[i], SamplesToDo); mUpsampler[i].Splitter.process(mSamples[HF_BAND].data(), mSamples[LF_BAND].data(), InSamples[i], SamplesToDo); MixRowSamples(OutBuffer[i], mUpsampler[i].Gains, &reinterpret_cast(mSamples[0]), sNumBands, 0, SamplesToDo); } for(ALsizei i{InChannels};i < OutChannels;i++) mUpAllpass[i].process(OutBuffer[i], SamplesToDo); } std::array AmbiUpsampler::GetHFOrderScales(const ALsizei in_order, const ALsizei out_order) noexcept { std::array ret{}; assert(out_order >= in_order); ASSUME(out_order >= in_order); const ALfloat (&target)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order); const ALfloat (&input)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(in_order); for(ALsizei i{0};i < in_order+1;++i) ret[i] = input[i] / target[i]; return ret; } void AmbiUpsampler::reset(const ALsizei out_order, const ALfloat xover_norm) { const ALfloat (&hfscales)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order); mInput[0].Splitter.init(xover_norm); mInput[0].Gains[HF_BAND] = Ambi3DDecoderHFScale[0] / hfscales[0]; mInput[0].Gains[LF_BAND] = 1.0f; mInput[1].Splitter.init(xover_norm); mInput[1].Gains[HF_BAND] = Ambi3DDecoderHFScale[1] / hfscales[1]; mInput[1].Gains[LF_BAND] = 1.0f; std::fill(std::begin(mInput)+2, std::end(mInput), mInput[1]); mAllpass[0].init(xover_norm); std::fill(std::begin(mAllpass)+1, std::end(mAllpass), mAllpass[0]); } void AmbiUpsampler::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei InChannels, const ALsizei SamplesToDo) { ASSUME(InChannels > 0); ASSUME(OutChannels > InChannels); for(ALsizei i{0};i < InChannels;i++) { mAllpass[i].process(OutBuffer[i], SamplesToDo); mInput[i].Splitter.process(mSamples[HF_BAND], mSamples[LF_BAND], InSamples[i], SamplesToDo); MixRowSamples(OutBuffer[i], mInput[i].Gains, mSamples, sNumBands, 0, SamplesToDo); } for(ALsizei i{InChannels};i < OutChannels;i++) mAllpass[i].process(OutBuffer[i], SamplesToDo); }