#include "config.h" #include #include #include #include #include "bformatdec.h" #include "ambdec.h" #include "filters/splitter.h" #include "alu.h" #include "threads.h" #include "almalloc.h" /* NOTE: These are scale factors as applied to Ambisonics content. Decoder * coefficients should be divided by these values to get proper N3D scalings. */ const ALfloat N3D2N3DScale[MAX_AMBI_COEFFS] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }; const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = { 1.000000000f, /* ACN 0 (W), sqrt(1) */ 1.732050808f, /* ACN 1 (Y), sqrt(3) */ 1.732050808f, /* ACN 2 (Z), sqrt(3) */ 1.732050808f, /* ACN 3 (X), sqrt(3) */ 2.236067978f, /* ACN 4 (V), sqrt(5) */ 2.236067978f, /* ACN 5 (T), sqrt(5) */ 2.236067978f, /* ACN 6 (R), sqrt(5) */ 2.236067978f, /* ACN 7 (S), sqrt(5) */ 2.236067978f, /* ACN 8 (U), sqrt(5) */ 2.645751311f, /* ACN 9 (Q), sqrt(7) */ 2.645751311f, /* ACN 10 (O), sqrt(7) */ 2.645751311f, /* ACN 11 (M), sqrt(7) */ 2.645751311f, /* ACN 12 (K), sqrt(7) */ 2.645751311f, /* ACN 13 (L), sqrt(7) */ 2.645751311f, /* ACN 14 (N), sqrt(7) */ 2.645751311f, /* ACN 15 (P), sqrt(7) */ }; const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = { 1.414213562f, /* ACN 0 (W), sqrt(2) */ 1.732050808f, /* ACN 1 (Y), sqrt(3) */ 1.732050808f, /* ACN 2 (Z), sqrt(3) */ 1.732050808f, /* ACN 3 (X), sqrt(3) */ 1.936491673f, /* ACN 4 (V), sqrt(15)/2 */ 1.936491673f, /* ACN 5 (T), sqrt(15)/2 */ 2.236067978f, /* ACN 6 (R), sqrt(5) */ 1.936491673f, /* ACN 7 (S), sqrt(15)/2 */ 1.936491673f, /* ACN 8 (U), sqrt(15)/2 */ 2.091650066f, /* ACN 9 (Q), sqrt(35/8) */ 1.972026594f, /* ACN 10 (O), sqrt(35)/3 */ 2.231093404f, /* ACN 11 (M), sqrt(224/45) */ 2.645751311f, /* ACN 12 (K), sqrt(7) */ 2.231093404f, /* ACN 13 (L), sqrt(224/45) */ 1.972026594f, /* ACN 14 (N), sqrt(35)/3 */ 2.091650066f, /* ACN 15 (P), sqrt(35/8) */ }; namespace { #define HF_BAND 0 #define LF_BAND 1 static_assert(BFormatDec::sNumBands == 2, "Unexpected BFormatDec::sNumBands"); static_assert(AmbiUpsampler::sNumBands == 2, "Unexpected AmbiUpsampler::sNumBands"); /* These points are in AL coordinates! */ constexpr ALfloat Ambi3DPoints[8][3] = { { -0.577350269f, 0.577350269f, -0.577350269f }, { 0.577350269f, 0.577350269f, -0.577350269f }, { -0.577350269f, 0.577350269f, 0.577350269f }, { 0.577350269f, 0.577350269f, 0.577350269f }, { -0.577350269f, -0.577350269f, -0.577350269f }, { 0.577350269f, -0.577350269f, -0.577350269f }, { -0.577350269f, -0.577350269f, 0.577350269f }, { 0.577350269f, -0.577350269f, 0.577350269f }, }; constexpr ALfloat Ambi3DDecoder[8][MAX_AMBI_COEFFS] = { { 0.125f, 0.125f, 0.125f, 0.125f }, { 0.125f, -0.125f, 0.125f, 0.125f }, { 0.125f, 0.125f, 0.125f, -0.125f }, { 0.125f, -0.125f, 0.125f, -0.125f }, { 0.125f, 0.125f, -0.125f, 0.125f }, { 0.125f, -0.125f, -0.125f, 0.125f }, { 0.125f, 0.125f, -0.125f, -0.125f }, { 0.125f, -0.125f, -0.125f, -0.125f }, }; constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_COEFFS] = { 2.0f, 1.15470054f, 1.15470054f, 1.15470054f }; #define INVALID_UPSAMPLE_INDEX INT_MAX ALsizei GetACNIndex(const BFChannelConfig *chans, ALsizei numchans, ALsizei acn) { ALsizei i; for(i = 0;i < numchans;i++) { if(chans[i].Index == acn) return i; } return INVALID_UPSAMPLE_INDEX; } #define GetChannelForACN(b, a) GetACNIndex((b).Ambi.Map, (b).NumChannels, (a)) } // namespace void BFormatDec::reset(const AmbDecConf *conf, ALsizei chancount, ALuint srate, const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS]) { static constexpr ALsizei map2DTo3D[MAX_AMBI2D_COEFFS] = { 0, 1, 3, 4, 8, 9, 15 }; const ALfloat *coeff_scale = N3D2N3DScale; mSamples.clear(); mSamplesHF = nullptr; mSamplesLF = nullptr; mNumChannels = chancount; mSamples.resize(mNumChannels * 2); mSamplesHF = mSamples.data(); mSamplesLF = mSamplesHF + mNumChannels; mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->NumSpeakers, 0u, [](ALuint mask, const ALsizei &chan) noexcept -> ALuint { return mask | (1 << chan); } ); if(conf->CoeffScale == AmbDecScale::SN3D) coeff_scale = SN3D2N3DScale; else if(conf->CoeffScale == AmbDecScale::FuMa) coeff_scale = FuMa2N3DScale; float ratio{400.0f / (float)srate}; for(auto &chan : mUpSampler) { chan.XOver.init(ratio); chan.XOver.clear(); std::fill(std::begin(chan.Gains), std::end(chan.Gains), 0.0f); } const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0}; if(periphonic) { mUpSampler[0].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? W_SCALE_3H3P : (conf->ChanMask > 0xf) ? W_SCALE_2H2P : 1.0f; mUpSampler[0].Gains[LF_BAND] = 1.0f; for(ALsizei i{1};i < 4;i++) { mUpSampler[i].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? XYZ_SCALE_3H3P : (conf->ChanMask > 0xf) ? XYZ_SCALE_2H2P : 1.0f; mUpSampler[i].Gains[LF_BAND] = 1.0f; } } else { mUpSampler[0].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? W_SCALE_3H0P : (conf->ChanMask > 0xf) ? W_SCALE_2H0P : 1.0f; mUpSampler[0].Gains[LF_BAND] = 1.0f; for(ALsizei i{1};i < 3;i++) { mUpSampler[i].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? XYZ_SCALE_3H0P : (conf->ChanMask > 0xf) ? XYZ_SCALE_2H0P : 1.0f; mUpSampler[i].Gains[LF_BAND] = 1.0f; } mUpSampler[3].Gains[HF_BAND] = 0.0f; mUpSampler[3].Gains[LF_BAND] = 0.0f; } memset(&mMatrix, 0, sizeof(mMatrix)); if(conf->FreqBands == 1) { mDualBand = AL_FALSE; for(ALsizei i{0};i < conf->NumSpeakers;i++) { ALsizei chan = chanmap[i]; ALfloat gain; ALsizei j, k; if(!periphonic) { for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++) { ALsizei l = map2DTo3D[j]; if(j == 0) gain = conf->HFOrderGain[0]; else if(j == 1) gain = conf->HFOrderGain[1]; else if(j == 3) gain = conf->HFOrderGain[2]; else if(j == 5) gain = conf->HFOrderGain[3]; if((conf->ChanMask&(1<HFMatrix[i][k++] / coeff_scale[l] * gain; } } else { for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++) { if(j == 0) gain = conf->HFOrderGain[0]; else if(j == 1) gain = conf->HFOrderGain[1]; else if(j == 4) gain = conf->HFOrderGain[2]; else if(j == 9) gain = conf->HFOrderGain[3]; if((conf->ChanMask&(1<HFMatrix[i][k++] / coeff_scale[j] * gain; } } } } else { using namespace std::placeholders; mDualBand = AL_TRUE; ratio = conf->XOverFreq / (ALfloat)srate; std::for_each(std::begin(mXOver), std::end(mXOver), std::bind(std::mem_fn(&BandSplitter::init), _1, ratio)); ratio = powf(10.0f, conf->XOverRatio / 40.0f); for(ALsizei i{0};i < conf->NumSpeakers;i++) { ALsizei chan = chanmap[i]; ALfloat gain; ALsizei j, k; if(!periphonic) { for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++) { ALsizei l = map2DTo3D[j]; if(j == 0) gain = conf->HFOrderGain[0] * ratio; else if(j == 1) gain = conf->HFOrderGain[1] * ratio; else if(j == 3) gain = conf->HFOrderGain[2] * ratio; else if(j == 5) gain = conf->HFOrderGain[3] * ratio; if((conf->ChanMask&(1<HFMatrix[i][k++] / coeff_scale[l] * gain; } for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++) { ALsizei l = map2DTo3D[j]; if(j == 0) gain = conf->LFOrderGain[0] / ratio; else if(j == 1) gain = conf->LFOrderGain[1] / ratio; else if(j == 3) gain = conf->LFOrderGain[2] / ratio; else if(j == 5) gain = conf->LFOrderGain[3] / ratio; if((conf->ChanMask&(1<LFMatrix[i][k++] / coeff_scale[l] * gain; } } else { for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++) { if(j == 0) gain = conf->HFOrderGain[0] * ratio; else if(j == 1) gain = conf->HFOrderGain[1] * ratio; else if(j == 4) gain = conf->HFOrderGain[2] * ratio; else if(j == 9) gain = conf->HFOrderGain[3] * ratio; if((conf->ChanMask&(1<HFMatrix[i][k++] / coeff_scale[j] * gain; } for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++) { if(j == 0) gain = conf->LFOrderGain[0] / ratio; else if(j == 1) gain = conf->LFOrderGain[1] / ratio; else if(j == 4) gain = conf->LFOrderGain[2] / ratio; else if(j == 9) gain = conf->LFOrderGain[3] / ratio; if((conf->ChanMask&(1<LFMatrix[i][k++] / coeff_scale[j] * gain; } } } } } void BFormatDec::process(ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], const ALsizei SamplesToDo) { ASSUME(OutChannels > 0); ASSUME(SamplesToDo > 0); ALsizei chan, i; if(mDualBand) { for(i = 0;i < mNumChannels;i++) mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i], SamplesToDo); for(chan = 0;chan < OutChannels;chan++) { if(UNLIKELY(!(mEnabled&(1<(mSamplesHF[0]), mNumChannels, 0, SamplesToDo ); MixRowSamples(mChannelMix, mMatrix.Dual[chan][LF_BAND], &reinterpret_cast(mSamplesLF[0]), mNumChannels, 0, SamplesToDo ); std::transform(std::begin(mChannelMix), std::begin(mChannelMix)+SamplesToDo, OutBuffer[chan], OutBuffer[chan], std::plus()); } } else { for(chan = 0;chan < OutChannels;chan++) { if(UNLIKELY(!(mEnabled&(1<()); } } } void BFormatDec::upSample(ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], const ALsizei InChannels, const ALsizei SamplesToDo) { ASSUME(InChannels > 0); ASSUME(SamplesToDo > 0); /* This up-sampler leverages the differences observed in dual-band second- * and third-order decoder matrices compared to first-order. For the same * output channel configuration, the low-frequency matrix has identical * coefficients in the shared input channels, while the high-frequency * matrix has extra scalars applied to the W channel and X/Y/Z channels. * Mixing the first-order content into the higher-order stream with the * appropriate counter-scales applied to the HF response results in the * subsequent higher-order decode generating the same response as a first- * order decode. */ for(ALsizei i{0};i < InChannels;i++) { /* First, split the first-order components into low and high frequency * bands. */ mUpSampler[i].XOver.process(mSamples[HF_BAND].data(), mSamples[LF_BAND].data(), InSamples[i], SamplesToDo); /* Now write each band to the output. */ MixRowSamples(OutBuffer[i], mUpSampler[i].Gains, &reinterpret_cast(mSamples[0]), sNumBands, 0, SamplesToDo); } } void AmbiUpsampler::reset(const ALCdevice *device, const ALfloat w_scale, const ALfloat xyz_scale) { using namespace std::placeholders; float ratio{400.0f / (float)device->Frequency}; std::for_each(std::begin(mXOver), std::end(mXOver), std::bind(std::mem_fn(&BandSplitter::init), _1, ratio)); memset(mGains, 0, sizeof(mGains)); if(device->Dry.CoeffCount > 0) { ALfloat encgains[8][MAX_OUTPUT_CHANNELS]; for(size_t k{0u};k < COUNTOF(Ambi3DPoints);k++) { ALfloat coeffs[MAX_AMBI_COEFFS] = { 0.0f }; CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs); ComputePanGains(&device->Dry, coeffs, 1.0f, encgains[k]); } /* Combine the matrices that do the in->virt and virt->out conversions * so we get a single in->out conversion. NOTE: the Encoder matrix * (encgains) and output are transposed, so the input channels line up * with the rows and the output channels line up with the columns. */ for(ALsizei i{0};i < 4;i++) { for(ALsizei j{0};j < device->Dry.NumChannels;j++) { ALdouble gain = 0.0; for(size_t k{0u};k < COUNTOF(Ambi3DDecoder);k++) gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][j]; mGains[i][j][HF_BAND] = (ALfloat)(gain * Ambi3DDecoderHFScale[i]); mGains[i][j][LF_BAND] = (ALfloat)gain; } } } else { for(ALsizei i{0};i < 4;i++) { ALsizei index = GetChannelForACN(device->Dry, i); if(index != INVALID_UPSAMPLE_INDEX) { ALfloat scale = device->Dry.Ambi.Map[index].Scale; mGains[i][index][HF_BAND] = scale * ((i==0) ? w_scale : xyz_scale); mGains[i][index][LF_BAND] = scale; } } } } void AmbiUpsampler::process(ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], const ALsizei SamplesToDo) { ASSUME(OutChannels > 0); ASSUME(SamplesToDo > 0); for(ALsizei i{0};i < 4;i++) { mXOver[i].process(mSamples[HF_BAND], mSamples[LF_BAND], InSamples[i], SamplesToDo); for(ALsizei j{0};j < OutChannels;j++) MixRowSamples(OutBuffer[j], mGains[i][j], mSamples, sNumBands, 0, SamplesToDo); } }