#include "config.h" #include #include #include #include #include #include #include "bformatdec.h" #include "ambdec.h" #include "filters/splitter.h" #include "alu.h" #include "threads.h" #include "almalloc.h" namespace { #define HF_BAND 0 #define LF_BAND 1 static_assert(BFormatDec::sNumBands == 2, "Unexpected BFormatDec::sNumBands"); static_assert(AmbiUpsampler::sNumBands == 2, "Unexpected AmbiUpsampler::sNumBands"); /* These points are in AL coordinates! */ constexpr ALfloat Ambi3DPoints[8][3] = { { -0.577350269f, 0.577350269f, -0.577350269f }, { 0.577350269f, 0.577350269f, -0.577350269f }, { -0.577350269f, 0.577350269f, 0.577350269f }, { 0.577350269f, 0.577350269f, 0.577350269f }, { -0.577350269f, -0.577350269f, -0.577350269f }, { 0.577350269f, -0.577350269f, -0.577350269f }, { -0.577350269f, -0.577350269f, 0.577350269f }, { 0.577350269f, -0.577350269f, 0.577350269f }, }; constexpr ALfloat Ambi3DDecoder[8][MAX_AMBI_COEFFS] = { { 0.125f, 0.125f, 0.125f, 0.125f }, { 0.125f, -0.125f, 0.125f, 0.125f }, { 0.125f, 0.125f, 0.125f, -0.125f }, { 0.125f, -0.125f, 0.125f, -0.125f }, { 0.125f, 0.125f, -0.125f, 0.125f }, { 0.125f, -0.125f, -0.125f, 0.125f }, { 0.125f, 0.125f, -0.125f, -0.125f }, { 0.125f, -0.125f, -0.125f, -0.125f }, }; constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_COEFFS] = { 2.0f, 1.15470054f, 1.15470054f, 1.15470054f }; constexpr ALfloat Ambi3DDecoderHFScale2O[MAX_AMBI_COEFFS] = { 1.49071198f, 1.15470054f, 1.15470054f, 1.15470054f }; constexpr ALfloat Ambi3DDecoderHFScale3O[MAX_AMBI_COEFFS] = { 1.17958441f, 1.01578297f, 1.01578297f, 1.01578297f }; inline auto GetDecoderHFScales(ALsizei order) noexcept -> const ALfloat(&)[MAX_AMBI_COEFFS] { if(order >= 3) return Ambi3DDecoderHFScale3O; if(order == 2) return Ambi3DDecoderHFScale2O; return Ambi3DDecoderHFScale; } inline auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const std::array& { if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa; if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D; return AmbiScale::FromN3D; } } // namespace void BFormatDec::reset(const AmbDecConf *conf, ALsizei chancount, ALuint srate, const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS]) { mSamples.clear(); mSamplesHF = nullptr; mSamplesLF = nullptr; mNumChannels = chancount; mSamples.resize(chancount * 2); mSamplesHF = mSamples.data(); mSamplesLF = mSamplesHF + chancount; mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->Speakers.size(), 0u, [](ALuint mask, const ALsizei &chan) noexcept -> ALuint { return mask | (1 << chan); } ); mUpSampler[0].XOver.init(conf->XOverFreq / (float)srate); std::fill(std::begin(mUpSampler[0].Gains), std::end(mUpSampler[0].Gains), 0.0f); std::fill(std::begin(mUpSampler)+1, std::end(mUpSampler), mUpSampler[0]); const ALsizei out_order{ (conf->ChanMask > AMBI_3ORDER_MASK) ? 4 : (conf->ChanMask > AMBI_2ORDER_MASK) ? 3 : (conf->ChanMask > AMBI_1ORDER_MASK) ? 2 : 1 }; const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0}; if(periphonic) { ALfloat encgains[8][MAX_OUTPUT_CHANNELS]{}; for(size_t k{0u};k < COUNTOF(Ambi3DPoints);k++) { ALfloat coeffs[MAX_AMBI_COEFFS]; CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs); std::copy(std::begin(coeffs), std::begin(coeffs)+chancount, std::begin(encgains[k])); } assert(chancount >= 4); const ALfloat (&hfscales)[MAX_AMBI_COEFFS] = GetDecoderHFScales(out_order); for(ALsizei i{0};i < 4;i++) { ALdouble gain{0.0}; for(size_t k{0u};k < COUNTOF(Ambi3DDecoder);k++) gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][i]; mUpSampler[i].Gains[HF_BAND] = (ALfloat)(gain*Ambi3DDecoderHFScale[i]/hfscales[i]); mUpSampler[i].Gains[LF_BAND] = (ALfloat)gain; } } else { ALfloat encgains[8][MAX_OUTPUT_CHANNELS]{}; for(size_t k{0u};k < COUNTOF(Ambi3DPoints);k++) { ALfloat coeffs[MAX_AMBI_COEFFS]; CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs); auto ambimap_end = AmbiIndex::From2D.begin() + chancount; std::transform(AmbiIndex::From2D.begin(), ambimap_end, std::begin(encgains[k]), [&coeffs](const ALsizei &index) noexcept -> ALfloat { ASSUME(index >= 0); return coeffs[index]; } ); } assert(chancount >= 3); const ALfloat (&hfscales)[MAX_AMBI_COEFFS] = GetDecoderHFScales(out_order); for(ALsizei c{0};c < 3;c++) { const ALsizei i{AmbiIndex::From2D[c]}; ALdouble gain{0.0}; for(size_t k{0u};k < COUNTOF(Ambi3DDecoder);k++) gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][c]; mUpSampler[c].Gains[HF_BAND] = (ALfloat)(gain*Ambi3DDecoderHFScale[i]/hfscales[i]); mUpSampler[c].Gains[LF_BAND] = (ALfloat)gain; } mUpSampler[3].Gains[HF_BAND] = 0.0f; mUpSampler[3].Gains[LF_BAND] = 0.0f; } const std::array &coeff_scale = GetAmbiScales(conf->CoeffScale); const ALsizei coeff_count{periphonic ? MAX_AMBI_COEFFS : MAX_AMBI2D_COEFFS}; mMatrix = MatrixU{}; mDualBand = (conf->FreqBands == 2); if(!mDualBand) { for(size_t i{0u};i < conf->Speakers.size();i++) { ALfloat (&mtx)[MAX_AMBI_COEFFS] = mMatrix.Single[chanmap[i]]; for(ALsizei j{0},k{0};j < coeff_count;j++) { const ALsizei l{periphonic ? j : AmbiIndex::From2D[j]}; if(!(conf->ChanMask&(1<HFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->HFOrderGain[3] : (l>=4) ? conf->HFOrderGain[2] : (l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]); ++k; } } } else { mXOver[0].init(conf->XOverFreq / (float)srate); std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]); const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)}; for(size_t i{0u};i < conf->Speakers.size();i++) { ALfloat (&mtx)[sNumBands][MAX_AMBI_COEFFS] = mMatrix.Dual[chanmap[i]]; for(ALsizei j{0},k{0};j < coeff_count;j++) { const ALsizei l{periphonic ? j : AmbiIndex::From2D[j]}; if(!(conf->ChanMask&(1<HFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->HFOrderGain[3] : (l>=4) ? conf->HFOrderGain[2] : (l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]) * ratio; mtx[LF_BAND][j] = conf->LFMatrix[i][k] / coeff_scale[l] * ((l>=9) ? conf->LFOrderGain[3] : (l>=4) ? conf->LFOrderGain[2] : (l>=1) ? conf->LFOrderGain[1] : conf->LFOrderGain[0]) / ratio; ++k; } } } } void BFormatDec::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei SamplesToDo) { ASSUME(OutChannels > 0); ASSUME(SamplesToDo > 0); ASSUME(mNumChannels > 0); if(mDualBand) { for(ALsizei i{0};i < mNumChannels;i++) mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i], SamplesToDo); for(ALsizei chan{0};chan < OutChannels;chan++) { if(UNLIKELY(!(mEnabled&(1<(mSamplesHF[0]), mNumChannels, 0, SamplesToDo ); MixRowSamples(OutBuffer[chan], mMatrix.Dual[chan][LF_BAND], &reinterpret_cast(mSamplesLF[0]), mNumChannels, 0, SamplesToDo ); } } else { for(ALsizei chan{0};chan < OutChannels;chan++) { if(UNLIKELY(!(mEnabled&(1< 0); ASSUME(SamplesToDo > 0); /* This up-sampler leverages the differences observed in dual-band higher- * order decoder matrices compared to first-order. For the same output * channel configuration, the low-frequency matrix has identical * coefficients in the shared input channels, while the high-frequency * matrix has extra scalars applied to the W channel and X/Y/Z channels. * Mixing the first-order content into the higher-order stream with the * appropriate counter-scales applied to the HF response results in the * subsequent higher-order decode generating the same response as a first- * order decode. */ for(ALsizei i{0};i < InChannels;i++) { /* First, split the first-order components into low and high frequency * bands. */ mUpSampler[i].XOver.process(mSamples[HF_BAND].data(), mSamples[LF_BAND].data(), InSamples[i], SamplesToDo); /* Now write each band to the output. */ MixRowSamples(OutBuffer[i], mUpSampler[i].Gains, &reinterpret_cast(mSamples[0]), sNumBands, 0, SamplesToDo); } } void AmbiUpsampler::reset(const ALCdevice *device) { mInput[0].XOver.init(400.0f / (float)device->Frequency); for(auto input = std::begin(mInput)+1;input != std::end(mInput);++input) input->XOver = mInput[0].XOver; ALfloat encgains[8][MAX_OUTPUT_CHANNELS]; for(size_t k{0u};k < COUNTOF(Ambi3DPoints);k++) { ALfloat coeffs[MAX_AMBI_COEFFS]; CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs); ComputePanGains(&device->Dry, coeffs, 1.0f, encgains[k]); } /* Combine the matrices that do the in->virt and virt->out conversions so * we get a single in->out conversion. NOTE: the Encoder matrix (encgains) * and output are transposed, so the input channels line up with the rows * and the output channels line up with the columns. */ const ALfloat (&hfscales)[MAX_AMBI_COEFFS] = GetDecoderHFScales( (device->Dry.NumChannels > 16) ? 4 : (device->Dry.NumChannels > 9) ? 3 : (device->Dry.NumChannels > 4) ? 2 : 1 ); for(ALsizei i{0};i < 4;i++) { mInput[i].Gains.fill({}); const ALdouble hfscale = static_cast(Ambi3DDecoderHFScale[i]) / hfscales[i]; for(ALsizei j{0};j < device->Dry.NumChannels;j++) { ALdouble gain{0.0}; for(size_t k{0u};k < COUNTOF(Ambi3DDecoder);k++) gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][j]; mInput[i].Gains[HF_BAND][j] = (ALfloat)(gain * hfscale); mInput[i].Gains[LF_BAND][j] = (ALfloat)gain; } } } void AmbiUpsampler::process(ALfloat (*OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*InSamples)[BUFFERSIZE], const ALsizei SamplesToDo) { for(auto input = std::begin(mInput);input != std::end(mInput);++input) { input->XOver.process(mSamples[HF_BAND], mSamples[LF_BAND], *(InSamples++), SamplesToDo); MixSamples(mSamples[HF_BAND], OutChannels, OutBuffer, input->Gains[HF_BAND].data(), input->Gains[HF_BAND].data(), 0, 0, SamplesToDo); MixSamples(mSamples[LF_BAND], OutChannels, OutBuffer, input->Gains[LF_BAND].data(), input->Gains[LF_BAND].data(), 0, 0, SamplesToDo); } }