/** * OpenAL cross platform audio library * Copyright (C) 2013 by Mike Gorchak * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "alMain.h" #include "alFilter.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" static_assert(AL_CHORUS_WAVEFORM_SINUSOID == AL_FLANGER_WAVEFORM_SINUSOID, "Chorus/Flanger waveform value mismatch"); static_assert(AL_CHORUS_WAVEFORM_TRIANGLE == AL_FLANGER_WAVEFORM_TRIANGLE, "Chorus/Flanger waveform value mismatch"); enum WaveForm { WF_Sinusoid, WF_Triangle }; typedef struct ALchorusState { DERIVE_FROM_TYPE(ALeffectState); ALfloat *SampleBuffer; ALsizei BufferLength; ALsizei offset; ALsizei lfo_offset; ALsizei lfo_range; ALfloat lfo_scale; ALint lfo_disp; /* Gains for left and right sides */ struct { ALfloat Current[MAX_OUTPUT_CHANNELS]; ALfloat Target[MAX_OUTPUT_CHANNELS]; } Gains[2]; /* effect parameters */ enum WaveForm waveform; ALint delay; ALfloat depth; ALfloat feedback; } ALchorusState; static ALvoid ALchorusState_Destruct(ALchorusState *state); static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Device); static ALvoid ALchorusState_update(ALchorusState *state, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props); static ALvoid ALchorusState_process(ALchorusState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); DECLARE_DEFAULT_ALLOCATORS(ALchorusState) DEFINE_ALEFFECTSTATE_VTABLE(ALchorusState); static void ALchorusState_Construct(ALchorusState *state) { ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); SET_VTABLE2(ALchorusState, ALeffectState, state); state->BufferLength = 0; state->SampleBuffer = NULL; state->offset = 0; state->lfo_offset = 0; state->lfo_range = 1; state->waveform = WF_Triangle; } static ALvoid ALchorusState_Destruct(ALchorusState *state) { al_free(state->SampleBuffer); state->SampleBuffer = NULL; ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); } static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Device) { const ALfloat max_delay = maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY); ALsizei maxlen; maxlen = NextPowerOf2(fastf2i(max_delay*2.0f*Device->Frequency) + 1); if(maxlen <= 0) return AL_FALSE; if(maxlen != state->BufferLength) { void *temp = al_calloc(16, maxlen * sizeof(ALfloat)); if(!temp) return AL_FALSE; al_free(state->SampleBuffer); state->SampleBuffer = temp; state->BufferLength = maxlen; } memset(state->SampleBuffer, 0, state->BufferLength*sizeof(ALfloat)); memset(state->Gains, 0, sizeof(state->Gains)); return AL_TRUE; } static ALvoid ALchorusState_update(ALchorusState *state, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props) { const ALsizei mindelay = MAX_RESAMPLE_PADDING << FRACTIONBITS; const ALCdevice *device = Context->Device; ALfloat frequency = (ALfloat)device->Frequency; ALfloat coeffs[MAX_AMBI_COEFFS]; ALfloat rate; ALint phase; switch(props->Chorus.Waveform) { case AL_CHORUS_WAVEFORM_TRIANGLE: state->waveform = WF_Triangle; break; case AL_CHORUS_WAVEFORM_SINUSOID: state->waveform = WF_Sinusoid; break; } /* The LFO depth is scaled to be relative to the sample delay. Clamp the * delay and depth to allow enough padding for resampling. */ state->delay = maxi(fastf2i(props->Chorus.Delay*frequency*FRACTIONONE + 0.5f), mindelay); state->depth = minf(props->Chorus.Depth * state->delay, (ALfloat)(state->delay - mindelay)); state->feedback = props->Chorus.Feedback; /* Gains for left and right sides */ CalcAngleCoeffs(-F_PI_2, 0.0f, 0.0f, coeffs); ComputeDryPanGains(&device->Dry, coeffs, Slot->Params.Gain, state->Gains[0].Target); CalcAngleCoeffs( F_PI_2, 0.0f, 0.0f, coeffs); ComputeDryPanGains(&device->Dry, coeffs, Slot->Params.Gain, state->Gains[1].Target); phase = props->Chorus.Phase; rate = props->Chorus.Rate; if(!(rate > 0.0f)) { state->lfo_offset = 0; state->lfo_range = 1; state->lfo_scale = 0.0f; state->lfo_disp = 0; } else { /* Calculate LFO coefficient (number of samples per cycle). Limit the * max range to avoid overflow when calculating the displacement. */ ALsizei lfo_range = mini(fastf2i(frequency/rate + 0.5f), INT_MAX/360 - 180); state->lfo_offset = fastf2i((ALfloat)state->lfo_offset/state->lfo_range* lfo_range + 0.5f) % lfo_range; state->lfo_range = lfo_range; switch(state->waveform) { case WF_Triangle: state->lfo_scale = 4.0f / state->lfo_range; break; case WF_Sinusoid: state->lfo_scale = F_TAU / state->lfo_range; break; } /* Calculate lfo phase displacement */ if(phase < 0) phase = 360 + phase; state->lfo_disp = (state->lfo_range*phase + 180) / 360; } } static void GetTriangleDelays(ALint *restrict delays, ALsizei offset, const ALsizei lfo_range, const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay, const ALsizei todo) { ALsizei i; for(i = 0;i < todo;i++) { delays[i] = fastf2i((1.0f - fabsf(2.0f - lfo_scale*offset)) * depth) + delay; offset = (offset+1)%lfo_range; } } static void GetSinusoidDelays(ALint *restrict delays, ALsizei offset, const ALsizei lfo_range, const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay, const ALsizei todo) { ALsizei i; for(i = 0;i < todo;i++) { delays[i] = fastf2i(sinf(lfo_scale*offset) * depth) + delay; offset = (offset+1)%lfo_range; } } static ALvoid ALchorusState_process(ALchorusState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) { const ALsizei bufmask = state->BufferLength-1; const ALfloat feedback = state->feedback; const ALsizei avgdelay = (state->delay + (FRACTIONONE>>1)) >> FRACTIONBITS; ALfloat *restrict delaybuf = state->SampleBuffer; ALsizei offset = state->offset; ALsizei i, c; ALsizei base; for(base = 0;base < SamplesToDo;) { const ALsizei todo = mini(256, SamplesToDo-base); ALint moddelays[2][256]; ALfloat temps[2][256]; if(state->waveform == WF_Sinusoid) { GetSinusoidDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale, state->depth, state->delay, todo); GetSinusoidDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range, state->lfo_range, state->lfo_scale, state->depth, state->delay, todo); } else /*if(state->waveform == WF_Triangle)*/ { GetTriangleDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale, state->depth, state->delay, todo); GetTriangleDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range, state->lfo_range, state->lfo_scale, state->depth, state->delay, todo); } state->lfo_offset = (state->lfo_offset+todo) % state->lfo_range; for(i = 0;i < todo;i++) { ALint delay; ALfloat mu; // Feed the buffer's input first (necessary for delays < 1). delaybuf[offset&bufmask] = SamplesIn[0][base+i]; // Tap for the left output. delay = offset - (moddelays[0][i]>>FRACTIONBITS); mu = (moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE); temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu); // Tap for the right output. delay = offset - (moddelays[1][i]>>FRACTIONBITS); mu = (moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE); temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu); // Accumulate feedback from the average delay of the taps. delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback; offset++; } for(c = 0;c < 2;c++) MixSamples(temps[c], NumChannels, SamplesOut, state->Gains[c].Current, state->Gains[c].Target, SamplesToDo-base, base, todo); base += todo; } state->offset = offset; } typedef struct ALchorusStateFactory { DERIVE_FROM_TYPE(ALeffectStateFactory); } ALchorusStateFactory; static ALeffectState *ALchorusStateFactory_create(ALchorusStateFactory *UNUSED(factory)) { ALchorusState *state; NEW_OBJ0(state, ALchorusState)(); if(!state) return NULL; return STATIC_CAST(ALeffectState, state); } DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALchorusStateFactory); ALeffectStateFactory *ALchorusStateFactory_getFactory(void) { static ALchorusStateFactory ChorusFactory = { { GET_VTABLE2(ALchorusStateFactory, ALeffectStateFactory) } }; return STATIC_CAST(ALeffectStateFactory, &ChorusFactory); } void ALchorus_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_CHORUS_WAVEFORM: if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Waveform = val; break; case AL_CHORUS_PHASE: if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Phase = val; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALchorus_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { ALchorus_setParami(effect, context, param, vals[0]); } void ALchorus_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_CHORUS_RATE: if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Rate = val; break; case AL_CHORUS_DEPTH: if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Depth = val; break; case AL_CHORUS_FEEDBACK: if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Feedback = val; break; case AL_CHORUS_DELAY: if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Delay = val; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALchorus_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) { ALchorus_setParamf(effect, context, param, vals[0]); } void ALchorus_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_CHORUS_WAVEFORM: *val = props->Chorus.Waveform; break; case AL_CHORUS_PHASE: *val = props->Chorus.Phase; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALchorus_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { ALchorus_getParami(effect, context, param, vals); } void ALchorus_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_CHORUS_RATE: *val = props->Chorus.Rate; break; case AL_CHORUS_DEPTH: *val = props->Chorus.Depth; break; case AL_CHORUS_FEEDBACK: *val = props->Chorus.Feedback; break; case AL_CHORUS_DELAY: *val = props->Chorus.Delay; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALchorus_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) { ALchorus_getParamf(effect, context, param, vals); } DEFINE_ALEFFECT_VTABLE(ALchorus); /* Flanger is basically a chorus with a really short delay. They can both use * the same processing functions, so piggyback flanger on the chorus functions. */ typedef struct ALflangerStateFactory { DERIVE_FROM_TYPE(ALeffectStateFactory); } ALflangerStateFactory; ALeffectState *ALflangerStateFactory_create(ALflangerStateFactory *UNUSED(factory)) { ALchorusState *state; NEW_OBJ0(state, ALchorusState)(); if(!state) return NULL; return STATIC_CAST(ALeffectState, state); } DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALflangerStateFactory); ALeffectStateFactory *ALflangerStateFactory_getFactory(void) { static ALflangerStateFactory FlangerFactory = { { GET_VTABLE2(ALflangerStateFactory, ALeffectStateFactory) } }; return STATIC_CAST(ALeffectStateFactory, &FlangerFactory); } void ALflanger_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_FLANGER_WAVEFORM: if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Waveform = val; break; case AL_FLANGER_PHASE: if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Phase = val; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALflanger_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { ALflanger_setParami(effect, context, param, vals[0]); } void ALflanger_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_FLANGER_RATE: if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Rate = val; break; case AL_FLANGER_DEPTH: if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Depth = val; break; case AL_FLANGER_FEEDBACK: if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Feedback = val; break; case AL_FLANGER_DELAY: if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Delay = val; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALflanger_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) { ALflanger_setParamf(effect, context, param, vals[0]); } void ALflanger_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_FLANGER_WAVEFORM: *val = props->Chorus.Waveform; break; case AL_FLANGER_PHASE: *val = props->Chorus.Phase; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALflanger_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { ALflanger_getParami(effect, context, param, vals); } void ALflanger_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_FLANGER_RATE: *val = props->Chorus.Rate; break; case AL_FLANGER_DEPTH: *val = props->Chorus.Depth; break; case AL_FLANGER_FEEDBACK: *val = props->Chorus.Feedback; break; case AL_FLANGER_DELAY: *val = props->Chorus.Delay; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALflanger_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) { ALflanger_getParamf(effect, context, param, vals); } DEFINE_ALEFFECT_VTABLE(ALflanger);