/** * OpenAL cross platform audio library * Copyright (C) 2013 by Mike Gorchak * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "alMain.h" #include "alFilter.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" enum ChorusWaveForm { CWF_Triangle = AL_CHORUS_WAVEFORM_TRIANGLE, CWF_Sinusoid = AL_CHORUS_WAVEFORM_SINUSOID }; typedef struct ALchorusState { DERIVE_FROM_TYPE(ALeffectState); ALfloat *SampleBuffer[2]; ALuint BufferLength; ALuint offset; ALuint lfo_range; ALfloat lfo_scale; ALint lfo_disp; /* Gains for left and right sides */ ALfloat Gain[2][MaxChannels]; /* effect parameters */ enum ChorusWaveForm waveform; ALint delay; ALfloat depth; ALfloat feedback; } ALchorusState; static ALvoid ALchorusState_Destruct(ALchorusState *state) { free(state->SampleBuffer[0]); state->SampleBuffer[0] = NULL; state->SampleBuffer[1] = NULL; } static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Device) { ALuint maxlen; ALuint it; maxlen = fastf2u(AL_CHORUS_MAX_DELAY * 3.0f * Device->Frequency) + 1; maxlen = NextPowerOf2(maxlen); if(maxlen != state->BufferLength) { void *temp; temp = realloc(state->SampleBuffer[0], maxlen * sizeof(ALfloat) * 2); if(!temp) return AL_FALSE; state->SampleBuffer[0] = temp; state->SampleBuffer[1] = state->SampleBuffer[0] + maxlen; state->BufferLength = maxlen; } for(it = 0;it < state->BufferLength;it++) { state->SampleBuffer[0][it] = 0.0f; state->SampleBuffer[1][it] = 0.0f; } return AL_TRUE; } static ALvoid ALchorusState_update(ALchorusState *state, ALCdevice *Device, const ALeffectslot *Slot) { static const ALfloat left_dir[3] = { -1.0f, 0.0f, 0.0f }; static const ALfloat right_dir[3] = { 1.0f, 0.0f, 0.0f }; ALfloat frequency = (ALfloat)Device->Frequency; ALfloat rate; ALint phase; switch(Slot->EffectProps.Chorus.Waveform) { case AL_CHORUS_WAVEFORM_TRIANGLE: state->waveform = CWF_Triangle; break; case AL_CHORUS_WAVEFORM_SINUSOID: state->waveform = CWF_Sinusoid; break; } state->depth = Slot->EffectProps.Chorus.Depth; state->feedback = Slot->EffectProps.Chorus.Feedback; state->delay = fastf2i(Slot->EffectProps.Chorus.Delay * frequency); /* Gains for left and right sides */ ComputeDirectionalGains(Device, left_dir, Slot->Gain, state->Gain[0]); ComputeDirectionalGains(Device, right_dir, Slot->Gain, state->Gain[1]); phase = Slot->EffectProps.Chorus.Phase; rate = Slot->EffectProps.Chorus.Rate; if(!(rate > 0.0f)) { state->lfo_scale = 0.0f; state->lfo_range = 1; state->lfo_disp = 0; } else { /* Calculate LFO coefficient */ state->lfo_range = fastf2u(frequency/rate + 0.5f); switch(state->waveform) { case CWF_Triangle: state->lfo_scale = 4.0f / state->lfo_range; break; case CWF_Sinusoid: state->lfo_scale = F_2PI / state->lfo_range; break; } /* Calculate lfo phase displacement */ state->lfo_disp = fastf2i(state->lfo_range * (phase/360.0f)); } } static inline void Triangle(ALint *delay_left, ALint *delay_right, ALuint offset, const ALchorusState *state) { ALfloat lfo_value; lfo_value = 2.0f - fabsf(2.0f - state->lfo_scale*(offset%state->lfo_range)); lfo_value *= state->depth * state->delay; *delay_left = fastf2i(lfo_value) + state->delay; offset += state->lfo_disp; lfo_value = 2.0f - fabsf(2.0f - state->lfo_scale*(offset%state->lfo_range)); lfo_value *= state->depth * state->delay; *delay_right = fastf2i(lfo_value) + state->delay; } static inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALuint offset, const ALchorusState *state) { ALfloat lfo_value; lfo_value = 1.0f + sinf(state->lfo_scale*(offset%state->lfo_range)); lfo_value *= state->depth * state->delay; *delay_left = fastf2i(lfo_value) + state->delay; offset += state->lfo_disp; lfo_value = 1.0f + sinf(state->lfo_scale*(offset%state->lfo_range)); lfo_value *= state->depth * state->delay; *delay_right = fastf2i(lfo_value) + state->delay; } #define DECL_TEMPLATE(Func) \ static void Process##Func(ALchorusState *state, const ALuint SamplesToDo, \ const ALfloat *restrict SamplesIn, ALfloat (*restrict out)[2]) \ { \ const ALuint bufmask = state->BufferLength-1; \ ALfloat *restrict leftbuf = state->SampleBuffer[0]; \ ALfloat *restrict rightbuf = state->SampleBuffer[1]; \ ALuint offset = state->offset; \ const ALfloat feedback = state->feedback; \ ALuint it; \ \ for(it = 0;it < SamplesToDo;it++) \ { \ ALint delay_left, delay_right; \ Func(&delay_left, &delay_right, offset, state); \ \ out[it][0] = leftbuf[(offset-delay_left)&bufmask]; \ leftbuf[offset&bufmask] = (out[it][0]+SamplesIn[it]) * feedback; \ \ out[it][1] = rightbuf[(offset-delay_right)&bufmask]; \ rightbuf[offset&bufmask] = (out[it][1]+SamplesIn[it]) * feedback; \ \ offset++; \ } \ state->offset = offset; \ } DECL_TEMPLATE(Triangle) DECL_TEMPLATE(Sinusoid) #undef DECL_TEMPLATE static ALvoid ALchorusState_process(ALchorusState *state, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE]) { ALuint it, kt; ALuint base; for(base = 0;base < SamplesToDo;) { ALfloat temps[64][2]; ALuint td = minu(SamplesToDo-base, 64); switch(state->waveform) { case CWF_Triangle: ProcessTriangle(state, td, SamplesIn+base, temps); break; case CWF_Sinusoid: ProcessSinusoid(state, td, SamplesIn+base, temps); break; } for(kt = 0;kt < MaxChannels;kt++) { ALfloat gain = state->Gain[0][kt]; if(gain > GAIN_SILENCE_THRESHOLD) { for(it = 0;it < td;it++) SamplesOut[kt][it+base] += temps[it][0] * gain; } gain = state->Gain[1][kt]; if(gain > GAIN_SILENCE_THRESHOLD) { for(it = 0;it < td;it++) SamplesOut[kt][it+base] += temps[it][1] * gain; } } base += td; } } DECLARE_DEFAULT_ALLOCATORS(ALchorusState) DEFINE_ALEFFECTSTATE_VTABLE(ALchorusState); typedef struct ALchorusStateFactory { DERIVE_FROM_TYPE(ALeffectStateFactory); } ALchorusStateFactory; static ALeffectState *ALchorusStateFactory_create(ALchorusStateFactory *UNUSED(factory)) { ALchorusState *state; state = ALchorusState_New(sizeof(*state)); if(!state) return NULL; SET_VTABLE2(ALchorusState, ALeffectState, state); state->BufferLength = 0; state->SampleBuffer[0] = NULL; state->SampleBuffer[1] = NULL; state->offset = 0; state->lfo_range = 1; state->waveform = CWF_Triangle; return STATIC_CAST(ALeffectState, state); } DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALchorusStateFactory); ALeffectStateFactory *ALchorusStateFactory_getFactory(void) { static ALchorusStateFactory ChorusFactory = { { GET_VTABLE2(ALchorusStateFactory, ALeffectStateFactory) } }; return STATIC_CAST(ALeffectStateFactory, &ChorusFactory); } void ALchorus_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_CHORUS_WAVEFORM: if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Waveform = val; break; case AL_CHORUS_PHASE: if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Phase = val; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALchorus_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { ALchorus_setParami(effect, context, param, vals[0]); } void ALchorus_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_CHORUS_RATE: if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Rate = val; break; case AL_CHORUS_DEPTH: if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Depth = val; break; case AL_CHORUS_FEEDBACK: if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Feedback = val; break; case AL_CHORUS_DELAY: if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Chorus.Delay = val; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALchorus_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) { ALchorus_setParamf(effect, context, param, vals[0]); } void ALchorus_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_CHORUS_WAVEFORM: *val = props->Chorus.Waveform; break; case AL_CHORUS_PHASE: *val = props->Chorus.Phase; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALchorus_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { ALchorus_getParami(effect, context, param, vals); } void ALchorus_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_CHORUS_RATE: *val = props->Chorus.Rate; break; case AL_CHORUS_DEPTH: *val = props->Chorus.Depth; break; case AL_CHORUS_FEEDBACK: *val = props->Chorus.Feedback; break; case AL_CHORUS_DELAY: *val = props->Chorus.Delay; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALchorus_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) { ALchorus_getParamf(effect, context, param, vals); } DEFINE_ALEFFECT_VTABLE(ALchorus);