/** * OpenAL cross platform audio library * Copyright (C) 2009 by Chris Robinson. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "alMain.h" #include "alFilter.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" typedef struct ALechoState { DERIVE_FROM_TYPE(ALeffectState); ALfloat *SampleBuffer; ALuint BufferLength; // The echo is two tap. The delay is the number of samples from before the // current offset struct { ALuint delay; } Tap[2]; ALuint Offset; /* The panning gains for the two taps */ ALfloat Gain[2][MAX_OUTPUT_CHANNELS]; ALfloat FeedGain; ALfilterState Filter; } ALechoState; static ALvoid ALechoState_Destruct(ALechoState *state) { free(state->SampleBuffer); state->SampleBuffer = NULL; } static ALboolean ALechoState_deviceUpdate(ALechoState *state, ALCdevice *Device) { ALuint maxlen, i; // Use the next power of 2 for the buffer length, so the tap offsets can be // wrapped using a mask instead of a modulo maxlen = fastf2u(AL_ECHO_MAX_DELAY * Device->Frequency) + 1; maxlen += fastf2u(AL_ECHO_MAX_LRDELAY * Device->Frequency) + 1; maxlen = NextPowerOf2(maxlen); if(maxlen != state->BufferLength) { void *temp; temp = realloc(state->SampleBuffer, maxlen * sizeof(ALfloat)); if(!temp) return AL_FALSE; state->SampleBuffer = temp; state->BufferLength = maxlen; } for(i = 0;i < state->BufferLength;i++) state->SampleBuffer[i] = 0.0f; return AL_TRUE; } static ALvoid ALechoState_update(ALechoState *state, const ALCdevice *Device, const ALeffectslot *Slot) { ALuint frequency = Device->Frequency; ALfloat coeffs[MAX_AMBI_COEFFS]; ALfloat gain, lrpan; state->Tap[0].delay = fastf2u(Slot->EffectProps.Echo.Delay * frequency) + 1; state->Tap[1].delay = fastf2u(Slot->EffectProps.Echo.LRDelay * frequency); state->Tap[1].delay += state->Tap[0].delay; lrpan = Slot->EffectProps.Echo.Spread; state->FeedGain = Slot->EffectProps.Echo.Feedback; gain = minf(1.0f - Slot->EffectProps.Echo.Damping, 0.01f); ALfilterState_setParams(&state->Filter, ALfilterType_HighShelf, gain, LOWPASSFREQREF/frequency, calc_rcpQ_from_slope(gain, 0.75f)); gain = Slot->Gain; /* First tap panning */ CalcXYZCoeffs(-lrpan, 0.0f, 0.0f, coeffs); ComputePanningGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels, Device->Dry.CoeffCount, coeffs, gain, state->Gain[0]); /* Second tap panning */ CalcXYZCoeffs( lrpan, 0.0f, 0.0f, coeffs); ComputePanningGains(Device->Dry.AmbiCoeffs, Device->Dry.NumChannels, Device->Dry.CoeffCount, coeffs, gain, state->Gain[1]); } static ALvoid ALechoState_process(ALechoState *state, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels) { const ALuint mask = state->BufferLength-1; const ALuint tap1 = state->Tap[0].delay; const ALuint tap2 = state->Tap[1].delay; ALuint offset = state->Offset; ALfloat smp; ALuint base; ALuint i, k; for(base = 0;base < SamplesToDo;) { ALfloat temps[128][2]; ALuint td = minu(128, SamplesToDo-base); for(i = 0;i < td;i++) { /* First tap */ temps[i][0] = state->SampleBuffer[(offset-tap1) & mask]; /* Second tap */ temps[i][1] = state->SampleBuffer[(offset-tap2) & mask]; // Apply damping and feedback gain to the second tap, and mix in the // new sample smp = ALfilterState_processSingle(&state->Filter, temps[i][1]+SamplesIn[0][i+base]); state->SampleBuffer[offset&mask] = smp * state->FeedGain; offset++; } for(k = 0;k < NumChannels;k++) { ALfloat gain = state->Gain[0][k]; if(fabsf(gain) > GAIN_SILENCE_THRESHOLD) { for(i = 0;i < td;i++) SamplesOut[k][i+base] += temps[i][0] * gain; } gain = state->Gain[1][k]; if(fabsf(gain) > GAIN_SILENCE_THRESHOLD) { for(i = 0;i < td;i++) SamplesOut[k][i+base] += temps[i][1] * gain; } } base += td; } state->Offset = offset; } DECLARE_DEFAULT_ALLOCATORS(ALechoState) DEFINE_ALEFFECTSTATE_VTABLE(ALechoState); typedef struct ALechoStateFactory { DERIVE_FROM_TYPE(ALeffectStateFactory); } ALechoStateFactory; ALeffectState *ALechoStateFactory_create(ALechoStateFactory *UNUSED(factory)) { ALechoState *state; state = ALechoState_New(sizeof(*state)); if(!state) return NULL; SET_VTABLE2(ALechoState, ALeffectState, state); state->BufferLength = 0; state->SampleBuffer = NULL; state->Tap[0].delay = 0; state->Tap[1].delay = 0; state->Offset = 0; ALfilterState_clear(&state->Filter); return STATIC_CAST(ALeffectState, state); } DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALechoStateFactory); ALeffectStateFactory *ALechoStateFactory_getFactory(void) { static ALechoStateFactory EchoFactory = { { GET_VTABLE2(ALechoStateFactory, ALeffectStateFactory) } }; return STATIC_CAST(ALeffectStateFactory, &EchoFactory); } void ALecho_setParami(ALeffect *UNUSED(effect), ALCcontext *context, ALenum UNUSED(param), ALint UNUSED(val)) { SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } void ALecho_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { ALecho_setParami(effect, context, param, vals[0]); } void ALecho_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_ECHO_DELAY: if(!(val >= AL_ECHO_MIN_DELAY && val <= AL_ECHO_MAX_DELAY)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Echo.Delay = val; break; case AL_ECHO_LRDELAY: if(!(val >= AL_ECHO_MIN_LRDELAY && val <= AL_ECHO_MAX_LRDELAY)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Echo.LRDelay = val; break; case AL_ECHO_DAMPING: if(!(val >= AL_ECHO_MIN_DAMPING && val <= AL_ECHO_MAX_DAMPING)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Echo.Damping = val; break; case AL_ECHO_FEEDBACK: if(!(val >= AL_ECHO_MIN_FEEDBACK && val <= AL_ECHO_MAX_FEEDBACK)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Echo.Feedback = val; break; case AL_ECHO_SPREAD: if(!(val >= AL_ECHO_MIN_SPREAD && val <= AL_ECHO_MAX_SPREAD)) SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE); props->Echo.Spread = val; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALecho_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) { ALecho_setParamf(effect, context, param, vals[0]); } void ALecho_getParami(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum UNUSED(param), ALint *UNUSED(val)) { SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } void ALecho_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { ALecho_getParami(effect, context, param, vals); } void ALecho_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_ECHO_DELAY: *val = props->Echo.Delay; break; case AL_ECHO_LRDELAY: *val = props->Echo.LRDelay; break; case AL_ECHO_DAMPING: *val = props->Echo.Damping; break; case AL_ECHO_FEEDBACK: *val = props->Echo.Feedback; break; case AL_ECHO_SPREAD: *val = props->Echo.Spread; break; default: SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM); } } void ALecho_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) { ALecho_getParamf(effect, context, param, vals); } DEFINE_ALEFFECT_VTABLE(ALecho);