/** * OpenAL cross platform audio library * Copyright (C) 2009 by Chris Robinson. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "alMain.h" #include "alFilter.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" typedef struct ALechoStateFactory { DERIVE_FROM_TYPE(ALeffectStateFactory); } ALechoStateFactory; static ALechoStateFactory EchoFactory; typedef struct ALechoState { DERIVE_FROM_TYPE(ALeffectState); ALfloat *SampleBuffer; ALuint BufferLength; // The echo is two tap. The delay is the number of samples from before the // current offset struct { ALuint delay; } Tap[2]; ALuint Offset; /* The panning gains for the two taps */ ALfloat Gain[2][MaxChannels]; ALfloat FeedGain; FILTER iirFilter; } ALechoState; static ALvoid ALechoState_Destruct(ALechoState *state) { free(state->SampleBuffer); state->SampleBuffer = NULL; } static ALboolean ALechoState_DeviceUpdate(ALechoState *state, ALCdevice *Device) { ALuint maxlen, i; // Use the next power of 2 for the buffer length, so the tap offsets can be // wrapped using a mask instead of a modulo maxlen = fastf2u(AL_ECHO_MAX_DELAY * Device->Frequency) + 1; maxlen += fastf2u(AL_ECHO_MAX_LRDELAY * Device->Frequency) + 1; maxlen = NextPowerOf2(maxlen); if(maxlen != state->BufferLength) { void *temp; temp = realloc(state->SampleBuffer, maxlen * sizeof(ALfloat)); if(!temp) return AL_FALSE; state->SampleBuffer = temp; state->BufferLength = maxlen; } for(i = 0;i < state->BufferLength;i++) state->SampleBuffer[i] = 0.0f; return AL_TRUE; } static ALvoid ALechoState_Update(ALechoState *state, ALCdevice *Device, const ALeffectslot *Slot) { ALuint frequency = Device->Frequency; ALfloat lrpan, cw, g, gain; ALfloat dirGain; ALuint i; state->Tap[0].delay = fastf2u(Slot->EffectProps.Echo.Delay * frequency) + 1; state->Tap[1].delay = fastf2u(Slot->EffectProps.Echo.LRDelay * frequency); state->Tap[1].delay += state->Tap[0].delay; lrpan = Slot->EffectProps.Echo.Spread; state->FeedGain = Slot->EffectProps.Echo.Feedback; cw = cosf(F_PI*2.0f * LOWPASSFREQREF / frequency); g = 1.0f - Slot->EffectProps.Echo.Damping; state->iirFilter.coeff = lpCoeffCalc(g, cw); gain = Slot->Gain; for(i = 0;i < MaxChannels;i++) { state->Gain[0][i] = 0.0f; state->Gain[1][i] = 0.0f; } dirGain = fabsf(lrpan); /* First tap panning */ ComputeAngleGains(Device, atan2f(-lrpan, 0.0f), (1.0f-dirGain)*F_PI, gain, state->Gain[0]); /* Second tap panning */ ComputeAngleGains(Device, atan2f(+lrpan, 0.0f), (1.0f-dirGain)*F_PI, gain, state->Gain[1]); } static ALvoid ALechoState_Process(ALechoState *state, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE]) { const ALuint mask = state->BufferLength-1; const ALuint tap1 = state->Tap[0].delay; const ALuint tap2 = state->Tap[1].delay; ALuint offset = state->Offset; ALfloat smp; ALuint base; ALuint i, k; for(base = 0;base < SamplesToDo;) { ALfloat temps[64][2]; ALuint td = minu(SamplesToDo-base, 64); for(i = 0;i < td;i++) { /* First tap */ temps[i][0] = state->SampleBuffer[(offset-tap1) & mask]; /* Second tap */ temps[i][1] = state->SampleBuffer[(offset-tap2) & mask]; // Apply damping and feedback gain to the second tap, and mix in the // new sample smp = lpFilter2P(&state->iirFilter, temps[i][1]+SamplesIn[i]); state->SampleBuffer[offset&mask] = smp * state->FeedGain; } for(k = 0;k < MaxChannels;k++) { ALfloat gain = state->Gain[0][k]; if(gain > 0.00001f) { for(i = 0;i < td;i++) SamplesOut[k][i+base] += temps[i][0] * gain; } gain = state->Gain[1][k]; if(gain > 0.00001f) { for(i = 0;i < td;i++) SamplesOut[k][i+base] += temps[i][1] * gain; } } base += td; } state->Offset = offset; } static void ALechoState_Delete(ALechoState *state) { free(state); } DEFINE_ALEFFECTSTATE_VTABLE(ALechoState); ALeffectState *ALechoStateFactory_create(void) { ALechoState *state; state = malloc(sizeof(*state)); if(!state) return NULL; SET_VTABLE2(ALechoState, ALeffectState, state); state->BufferLength = 0; state->SampleBuffer = NULL; state->Tap[0].delay = 0; state->Tap[1].delay = 0; state->Offset = 0; state->iirFilter.coeff = 0.0f; state->iirFilter.history[0] = 0.0f; state->iirFilter.history[1] = 0.0f; return STATIC_CAST(ALeffectState, state); } DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALechoStateFactory); static void init_echo_factory(void) { SET_VTABLE2(ALechoStateFactory, ALeffectStateFactory, &EchoFactory); } ALeffectStateFactory *ALechoStateFactory_getFactory(void) { static pthread_once_t once = PTHREAD_ONCE_INIT; pthread_once(&once, init_echo_factory); return STATIC_CAST(ALeffectStateFactory, &EchoFactory); } void ALecho_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { (void)effect;(void)param;(void)val; alSetError(context, AL_INVALID_ENUM); } void ALecho_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { ALecho_SetParami(effect, context, param, vals[0]); } void ALecho_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_ECHO_DELAY: if(val >= AL_ECHO_MIN_DELAY && val <= AL_ECHO_MAX_DELAY) props->Echo.Delay = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_ECHO_LRDELAY: if(val >= AL_ECHO_MIN_LRDELAY && val <= AL_ECHO_MAX_LRDELAY) props->Echo.LRDelay = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_ECHO_DAMPING: if(val >= AL_ECHO_MIN_DAMPING && val <= AL_ECHO_MAX_DAMPING) props->Echo.Damping = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_ECHO_FEEDBACK: if(val >= AL_ECHO_MIN_FEEDBACK && val <= AL_ECHO_MAX_FEEDBACK) props->Echo.Feedback = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_ECHO_SPREAD: if(val >= AL_ECHO_MIN_SPREAD && val <= AL_ECHO_MAX_SPREAD) props->Echo.Spread = val; else alSetError(context, AL_INVALID_VALUE); break; default: alSetError(context, AL_INVALID_ENUM); break; } } void ALecho_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) { ALecho_SetParamf(effect, context, param, vals[0]); } void ALecho_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { (void)effect;(void)param;(void)val; alSetError(context, AL_INVALID_ENUM); } void ALecho_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { ALecho_GetParami(effect, context, param, vals); } void ALecho_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_ECHO_DELAY: *val = props->Echo.Delay; break; case AL_ECHO_LRDELAY: *val = props->Echo.LRDelay; break; case AL_ECHO_DAMPING: *val = props->Echo.Damping; break; case AL_ECHO_FEEDBACK: *val = props->Echo.Feedback; break; case AL_ECHO_SPREAD: *val = props->Echo.Spread; break; default: alSetError(context, AL_INVALID_ENUM); break; } } void ALecho_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) { ALecho_GetParamf(effect, context, param, vals); } DEFINE_ALEFFECT_VTABLE(ALecho);