/** * OpenAL cross platform audio library * Copyright (C) 2009 by Chris Robinson. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include "alMain.h" #include "alcontext.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" #include "filters/defs.h" #include "vecmat.h" #define MAX_UPDATE_SAMPLES 128 #define WAVEFORM_FRACBITS 24 #define WAVEFORM_FRACONE (1<>(WAVEFORM_FRACBITS-2))&2) - 1); } static inline ALfloat One(ALsizei UNUSED(index)) { return 1.0f; } template static void Modulate(ALfloat *RESTRICT dst, ALsizei index, const ALsizei step, ALsizei todo) { ALsizei i; for(i = 0;i < todo;i++) { index += step; index &= WAVEFORM_FRACMASK; dst[i] = func(index); } } struct ALmodulatorState final : public EffectState { void (*mGetSamples)(ALfloat*RESTRICT, ALsizei, const ALsizei, ALsizei){}; ALsizei mIndex{0}; ALsizei mStep{1}; struct { BiquadFilter Filter; ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]{}; ALfloat TargetGains[MAX_OUTPUT_CHANNELS]{}; } mChans[MAX_EFFECT_CHANNELS]; ALboolean deviceUpdate(ALCdevice *device) override; void update(const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) override; void process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], ALsizei numChannels) override; DEF_NEWDEL(ALmodulatorState) }; ALboolean ALmodulatorState::deviceUpdate(ALCdevice *UNUSED(device)) { for(auto &e : mChans) { e.Filter.clear(); std::fill(std::begin(e.CurrentGains), std::end(e.CurrentGains), 0.0f); } return AL_TRUE; } void ALmodulatorState::update(const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) { const ALCdevice *device = context->Device; ALfloat f0norm; ALsizei i; mStep = fastf2i(props->Modulator.Frequency / (ALfloat)device->Frequency * WAVEFORM_FRACONE); mStep = clampi(mStep, 0, WAVEFORM_FRACONE-1); if(mStep == 0) mGetSamples = Modulate; else if(props->Modulator.Waveform == AL_RING_MODULATOR_SINUSOID) mGetSamples = Modulate; else if(props->Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH) mGetSamples = Modulate; else /*if(Slot->Params.EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/ mGetSamples = Modulate; f0norm = props->Modulator.HighPassCutoff / (ALfloat)device->Frequency; f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f); /* Bandwidth value is constant in octaves. */ mChans[0].Filter.setParams(BiquadType::HighPass, 1.0f, f0norm, calc_rcpQ_from_bandwidth(f0norm, 0.75f)); for(i = 1;i < MAX_EFFECT_CHANNELS;i++) mChans[i].Filter.copyParamsFrom(mChans[0].Filter); mOutBuffer = device->FOAOut.Buffer; mOutChannels = device->FOAOut.NumChannels; for(i = 0;i < MAX_EFFECT_CHANNELS;i++) ComputePanGains(&device->FOAOut, alu::Matrix::Identity()[i].data(), slot->Params.Gain, mChans[i].TargetGains); } void ALmodulatorState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels) { const ALsizei step = mStep; ALsizei base; for(base = 0;base < SamplesToDo;) { alignas(16) ALfloat modsamples[MAX_UPDATE_SAMPLES]; ALsizei td = mini(MAX_UPDATE_SAMPLES, SamplesToDo-base); ALsizei c, i; mGetSamples(modsamples, mIndex, step, td); mIndex += (step*td) & WAVEFORM_FRACMASK; mIndex &= WAVEFORM_FRACMASK; for(c = 0;c < MAX_EFFECT_CHANNELS;c++) { alignas(16) ALfloat temps[MAX_UPDATE_SAMPLES]; mChans[c].Filter.process(temps, &SamplesIn[c][base], td); for(i = 0;i < td;i++) temps[i] *= modsamples[i]; MixSamples(temps, NumChannels, SamplesOut, mChans[c].CurrentGains, mChans[c].TargetGains, SamplesToDo-base, base, td); } base += td; } } struct ModulatorStateFactory final : public EffectStateFactory { EffectState *create() override; }; EffectState *ModulatorStateFactory::create() { return new ALmodulatorState{}; } EffectStateFactory *ModulatorStateFactory_getFactory(void) { static ModulatorStateFactory ModulatorFactory{}; return &ModulatorFactory; } void ALmodulator_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_RING_MODULATOR_FREQUENCY: if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator frequency out of range"); props->Modulator.Frequency = val; break; case AL_RING_MODULATOR_HIGHPASS_CUTOFF: if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator high-pass cutoff out of range"); props->Modulator.HighPassCutoff = val; break; default: alSetError(context, AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param); } } void ALmodulator_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) { ALmodulator_setParamf(effect, context, param, vals[0]); } void ALmodulator_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_RING_MODULATOR_FREQUENCY: case AL_RING_MODULATOR_HIGHPASS_CUTOFF: ALmodulator_setParamf(effect, context, param, (ALfloat)val); break; case AL_RING_MODULATOR_WAVEFORM: if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM)) SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid modulator waveform"); props->Modulator.Waveform = val; break; default: alSetError(context, AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param); } } void ALmodulator_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { ALmodulator_setParami(effect, context, param, vals[0]); } void ALmodulator_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_RING_MODULATOR_FREQUENCY: *val = (ALint)props->Modulator.Frequency; break; case AL_RING_MODULATOR_HIGHPASS_CUTOFF: *val = (ALint)props->Modulator.HighPassCutoff; break; case AL_RING_MODULATOR_WAVEFORM: *val = props->Modulator.Waveform; break; default: alSetError(context, AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param); } } void ALmodulator_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { ALmodulator_getParami(effect, context, param, vals); } void ALmodulator_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_RING_MODULATOR_FREQUENCY: *val = props->Modulator.Frequency; break; case AL_RING_MODULATOR_HIGHPASS_CUTOFF: *val = props->Modulator.HighPassCutoff; break; default: alSetError(context, AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param); } } void ALmodulator_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) { ALmodulator_getParamf(effect, context, param, vals); } DEFINE_ALEFFECT_VTABLE(ALmodulator);