/** * OpenAL cross platform audio library * Copyright (C) 2018 by Raul Herraiz. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "alMain.h" #include "alFilter.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" #define MAX_SIZE 2048 typedef struct ALcomplex{ ALfloat Real; ALfloat Imag; }ALcomplex; typedef struct ALphasor{ ALfloat Amplitude; ALfloat Phase; }ALphasor; typedef struct ALFrequencyDomain{ ALfloat Amplitude; ALfloat Frequency; }ALfrequencyDomain; typedef struct ALpshifterState { DERIVE_FROM_TYPE(ALeffectState); /* Effect gains for each channel */ ALfloat Gain[MAX_OUTPUT_CHANNELS]; /* Effect parameters */ ALsizei count; ALsizei STFT_size; ALsizei step; ALsizei FIFOLatency; ALsizei oversamp; ALfloat PitchShift; ALfloat Frequency; /*Effects buffers*/ ALfloat InFIFO[MAX_SIZE]; ALfloat OutFIFO[MAX_SIZE]; ALfloat LastPhase[(MAX_SIZE>>1) +1]; ALfloat SumPhase[(MAX_SIZE>>1) +1]; ALfloat OutputAccum[MAX_SIZE<<1]; ALfloat window[MAX_SIZE]; ALcomplex FFTbuffer[MAX_SIZE]; ALfrequencyDomain Analysis_buffer[MAX_SIZE]; ALfrequencyDomain Syntesis_buffer[MAX_SIZE]; } ALpshifterState; static inline ALphasor rect2polar( ALcomplex number ); static inline ALcomplex polar2rect( ALphasor number ); static inline ALvoid FFT(ALcomplex *FFTBuffer, ALsizei FFTSize, ALint Sign); static ALvoid ALpshifterState_Destruct(ALpshifterState *state); static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device); static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); DECLARE_DEFAULT_ALLOCATORS(ALpshifterState) DEFINE_ALEFFECTSTATE_VTABLE(ALpshifterState); static void ALpshifterState_Construct(ALpshifterState *state) { ALsizei i; ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); SET_VTABLE2(ALpshifterState, ALeffectState, state); /*Initializing parameters and set to zero the buffers */ state->STFT_size = MAX_SIZE>>1; state->oversamp = 1<<2; state->step = state->STFT_size / state->oversamp ; state->FIFOLatency = state->step * ( state->oversamp-1 ); state->count = state->FIFOLatency; memset(state->InFIFO, 0, MAX_SIZE*sizeof(ALfloat)); memset(state->OutFIFO, 0, MAX_SIZE*sizeof(ALfloat)); memset(state->FFTbuffer, 0, MAX_SIZE*sizeof(ALcomplex)); memset(state->LastPhase, 0, ((MAX_SIZE>>1) +1)*sizeof(ALfloat)); memset(state->SumPhase, 0, ((MAX_SIZE>>1) +1)*sizeof(ALfloat)); memset(state->OutputAccum, 0, (MAX_SIZE<<1)*sizeof(ALfloat)); memset(state->Analysis_buffer, 0, MAX_SIZE*sizeof(ALfrequencyDomain)); /* Create lockup table of the Hann window for the desired size, i.e. STFT_size */ for ( i = 0; i < state->STFT_size>>1 ; i++ ) { state->window[i] = state->window[state->STFT_size-(i+1)] \ = 0.5f * ( 1 - cosf(F_TAU*(ALfloat)i/(ALfloat)(state->STFT_size-1))); } } static ALvoid ALpshifterState_Destruct(ALpshifterState *state) { ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); } static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *UNUSED(state), ALCdevice *UNUSED(device)) { return AL_TRUE; } static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) { const ALCdevice *device = context->Device; ALfloat coeffs[MAX_AMBI_COEFFS]; const ALfloat adjust = 0.707945784384f; /*-3dB adjust*/ state->Frequency = (ALfloat)device->Frequency; state->PitchShift = powf(2.0f,((ALfloat)props->Pshifter.CoarseTune + props->Pshifter.FineTune/100.0f)/12.0f); CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs); ComputeDryPanGains(&device->Dry, coeffs, slot->Params.Gain * adjust, state->Gain); } static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) { /*Pitch shifter engine based on the work of Stephan Bernsee. * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/ **/ ALsizei i, j, k, STFT_half_size; ALfloat freq_bin, expected, tmp; ALfloat bufferOut[BUFFERSIZE]; ALphasor component; STFT_half_size = state->STFT_size >> 1; freq_bin = state->Frequency / (ALfloat)state->STFT_size; expected = F_TAU / (ALfloat)state->oversamp; for (i = 0; i < SamplesToDo; i++) { /* Fill FIFO buffer with samples data */ state->InFIFO[state->count] = SamplesIn[0][i]; bufferOut[i] = state->OutFIFO[state->count - state->FIFOLatency]; state->count++; /* Check whether FIFO buffer is filled */ if ( state->count >= state->STFT_size ) { state->count = state->FIFOLatency; /* Real signal windowing and store in FFTbuffer */ for ( k = 0; k < state->STFT_size; k++ ) { state->FFTbuffer[k].Real = state->InFIFO[k] * state->window[k]; state->FFTbuffer[k].Imag = 0.0f; } /* ANALYSIS */ /* Apply FFT to FFTbuffer data */ FFT( state->FFTbuffer, state->STFT_size, -1 ); /* Analyze the obtained data. Since the real FFT is symmetric, only STFT_half_size+1 samples are needed */ for ( k = 0; k <= STFT_half_size; k++ ) { /* Compute amplitude and phase */ component = rect2polar( state->FFTbuffer[k] ); /* Compute phase difference and subtract expected phase difference */ tmp = ( component.Phase - state->LastPhase[k] ) - (ALfloat)k*expected; /* Map delta phase into +/- Pi interval */ tmp -= F_PI*(ALfloat)( fastf2i(tmp/F_PI) + fastf2i(tmp/F_PI) % 2 ); /* Get deviation from bin frequency from the +/- Pi interval */ tmp /= expected; /* Compute the k-th partials' true frequency, twice the amplitude for maintain the gain (because half of bins are used) and store amplitude and true frequency in analysis buffer */ state->Analysis_buffer[k].Amplitude = 2.0f * component.Amplitude; state->Analysis_buffer[k].Frequency = ((ALfloat)k + tmp) * freq_bin; /* Store actual phase[k] for the calculations in the next frame*/ state->LastPhase[k] = component.Phase; } /* PROCESSING */ /* pitch shifting */ memset(state->Syntesis_buffer, 0, state->STFT_size*sizeof(ALfrequencyDomain)); for (k = 0; k <= STFT_half_size; k++) { j = fastf2i( (ALfloat)k*state->PitchShift ); if ( j <= STFT_half_size ) { state->Syntesis_buffer[j].Amplitude += state->Analysis_buffer[k].Amplitude; state->Syntesis_buffer[j].Frequency = state->Analysis_buffer[k].Frequency * state->PitchShift; } } /* SYNTHESIS */ /* Synthesis the processing data */ for ( k = 0; k <= STFT_half_size; k++ ) { /* Compute bin deviation from scaled freq */ tmp = state->Syntesis_buffer[k].Frequency /freq_bin - (ALfloat)k; /* Calculate actual delta phase and accumulate it to get bin phase */ state->SumPhase[k] += ((ALfloat)k + tmp) * expected; component.Amplitude = state->Syntesis_buffer[k].Amplitude; component.Phase = state->SumPhase[k]; /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/ state->FFTbuffer[k] = polar2rect( component ); } /* zero negative frequencies for recontruct a real signal */ memset( &state->FFTbuffer[STFT_half_size+1], 0, (STFT_half_size-1) * sizeof(ALcomplex) ); /* Apply iFFT to buffer data */ FFT( state->FFTbuffer, state->STFT_size, 1 ); /* Windowing and add to output */ for( k=0; k < state->STFT_size; k++ ) { state->OutputAccum[k] += 2.0f * state->window[k]*state->FFTbuffer[k].Real / (STFT_half_size * state->oversamp); } /* Shift accumulator, input & output FIFO */ memmove(state->OutFIFO , state->OutputAccum , state->step * sizeof(ALfloat)); memmove(state->OutputAccum, state->OutputAccum + state->step, state->STFT_size * sizeof(ALfloat)); memmove(state->InFIFO , state->InFIFO + state->step, state->FIFOLatency * sizeof(ALfloat)); } } /* Now, mix the processed sound data to the output*/ for (j = 0; j < NumChannels; j++ ) { ALfloat gain = state->Gain[j]; if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(i = 0;i < SamplesToDo;i++) SamplesOut[j][i] += gain * bufferOut[i]; } } typedef struct PshifterStateFactory { DERIVE_FROM_TYPE(EffectStateFactory); } PshifterStateFactory; static ALeffectState *PshifterStateFactory_create(PshifterStateFactory *UNUSED(factory)) { ALpshifterState *state; NEW_OBJ0(state, ALpshifterState)(); if(!state) return NULL; return STATIC_CAST(ALeffectState, state); } DEFINE_EFFECTSTATEFACTORY_VTABLE(PshifterStateFactory); EffectStateFactory *PshifterStateFactory_getFactory(void) { static PshifterStateFactory PshifterFactory = { { GET_VTABLE2(PshifterStateFactory, EffectStateFactory) } }; return STATIC_CAST(EffectStateFactory, &PshifterFactory); } void ALpshifter_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val)) { alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param ); } void ALpshifter_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat *UNUSED(vals)) { alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param ); } void ALpshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_PITCH_SHIFTER_COARSE_TUNE: if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE)) SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range"); props->Pshifter.CoarseTune = val; break; case AL_PITCH_SHIFTER_FINE_TUNE: if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE)) SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range"); props->Pshifter.FineTune = val; break; default: alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); } } void ALpshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { ALpshifter_setParami(effect, context, param, vals[0]); } void ALpshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_PITCH_SHIFTER_COARSE_TUNE: *val = (ALint)props->Pshifter.CoarseTune; break; case AL_PITCH_SHIFTER_FINE_TUNE: *val = (ALint)props->Pshifter.FineTune; break; default: alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); } } void ALpshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { ALpshifter_getParami(effect, context, param, vals); } void ALpshifter_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(val)) { alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); } void ALpshifter_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(vals)) { alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); } DEFINE_ALEFFECT_VTABLE(ALpshifter); /* Converts ALcomplex to ALphasor*/ static inline ALphasor rect2polar( ALcomplex number ) { ALphasor polar; polar.Amplitude = sqrtf ( number.Real*number.Real + number.Imag*number.Imag ); polar.Phase = atan2f( number.Imag , number.Real ); return polar; } /* Converts ALphasor to ALcomplex*/ static inline ALcomplex polar2rect( ALphasor number ) { ALcomplex cartesian; cartesian.Real = number.Amplitude * cosf( number.Phase ); cartesian.Imag = number.Amplitude * sinf( number.Phase ); return cartesian; } /* Addition of two complex numbers (ALcomplex format)*/ static inline ALcomplex complex_add( ALcomplex a, ALcomplex b ) { ALcomplex result; result.Real = ( a.Real + b.Real ); result.Imag = ( a.Imag + b.Imag ); return result; } /* Substraction of two complex numbers (ALcomplex format)*/ static inline ALcomplex complex_subst( ALcomplex a, ALcomplex b ) { ALcomplex result; result.Real = ( a.Real - b.Real ); result.Imag = ( a.Imag - b.Imag ); return result; } /* Multiplication of two complex numbers (ALcomplex format)*/ static inline ALcomplex complex_mult( ALcomplex a, ALcomplex b ) { ALcomplex result; result.Real = ( a.Real * b.Real - a.Imag * b.Imag ); result.Imag = ( a.Imag * b.Real + a.Real * b.Imag ); return result; } /* Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is FFT and 1 is iFFT (inverse). Fills FFTBuffer[0...FFTSize-1] with the Discrete Fourier Transform (DFT) of the time domain data stored in FFTBuffer[0...FFTSize-1]. FFTBuffer is an array of complex numbers (ALcomplex), FFTSize MUST BE power of two.*/ static inline ALvoid FFT(ALcomplex *FFTBuffer, ALsizei FFTSize, ALint Sign) { ALfloat arg; ALsizei i, j, k, mask, step, step2; ALcomplex temp, u, w; /*bit-reversal permutation applied to a sequence of FFTSize items*/ for (i = 1; i < FFTSize-1; i++ ) { for ( mask = 0x1, j = 0; mask < FFTSize; mask <<= 1 ) { if ( ( i & mask ) != 0 ) j++; j <<= 1; } j >>= 1; if ( i < j ) { temp = FFTBuffer[i]; FFTBuffer[i] = FFTBuffer[j]; FFTBuffer[j] = temp; } } /* Iterative form of Danielson–Lanczos lemma */ for ( i = 1, step = 2; i < FFTSize; i<<=1, step <<= 1 ) { step2 = step >> 1; arg = F_PI / step2; w.Real = cosf( arg ); w.Imag = sinf( arg ) * Sign; u.Real = 1.0f; u.Imag = 0.0f; for ( j = 0; j < step2; j++ ) { for ( k = j; k < FFTSize; k += step ) { temp = complex_mult( FFTBuffer[k+step2], u ); FFTBuffer[k+step2] = complex_subst( FFTBuffer[k], temp ); FFTBuffer[k] = complex_add( FFTBuffer[k], temp ); } u = complex_mult(u,w); } } }