/** * OpenAL cross platform audio library * Copyright (C) 2018 by Raul Herraiz. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "alMain.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" #include "filters/defs.h" #define STFT_SIZE 1024 #define STFT_HALF_SIZE (STFT_SIZE>>1) #define OVERSAMP (1<<2) #define STFT_STEP (STFT_SIZE / OVERSAMP) #define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1)) typedef struct ALcomplex { ALdouble Real; ALdouble Imag; } ALcomplex; typedef struct ALphasor { ALdouble Amplitude; ALdouble Phase; } ALphasor; typedef struct ALFrequencyDomain { ALdouble Amplitude; ALdouble Frequency; } ALfrequencyDomain; typedef struct ALpshifterState { DERIVE_FROM_TYPE(ALeffectState); /* Effect parameters */ ALsizei count; ALsizei PitchShiftI; ALfloat PitchShift; ALfloat FreqPerBin; /*Effects buffers*/ ALfloat InFIFO[STFT_SIZE]; ALfloat OutFIFO[STFT_STEP]; ALdouble LastPhase[STFT_HALF_SIZE+1]; ALdouble SumPhase[STFT_HALF_SIZE+1]; ALdouble OutputAccum[STFT_SIZE]; ALcomplex FFTbuffer[STFT_SIZE]; ALfrequencyDomain Analysis_buffer[STFT_HALF_SIZE+1]; ALfrequencyDomain Syntesis_buffer[STFT_HALF_SIZE+1]; alignas(16) ALfloat BufferOut[BUFFERSIZE]; /* Effect gains for each output channel */ ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]; ALfloat TargetGains[MAX_OUTPUT_CHANNELS]; } ALpshifterState; static ALvoid ALpshifterState_Destruct(ALpshifterState *state); static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device); static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); DECLARE_DEFAULT_ALLOCATORS(ALpshifterState) DEFINE_ALEFFECTSTATE_VTABLE(ALpshifterState); /* Define a Hann window, used to filter the STFT input and output. */ alignas(16) static ALdouble HannWindow[STFT_SIZE]; static void InitHannWindow(void) { ALsizei i; /* Create lookup table of the Hann window for the desired size, i.e. STFT_SIZE */ for(i = 0;i < STFT_SIZE>>1;i++) { ALdouble val = sin(M_PI * (ALdouble)i / (ALdouble)(STFT_SIZE-1)); HannWindow[i] = HannWindow[STFT_SIZE-1-i] = val * val; } } static alonce_flag HannInitOnce = AL_ONCE_FLAG_INIT; static inline ALint double2int(ALdouble d) { #if ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \ !defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) ALint sign, shift; ALint64 mant; union { ALdouble d; ALint64 i64; } conv; conv.d = d; sign = (conv.i64>>63) | 1; shift = ((conv.i64>>52)&0x7ff) - (1023+52); /* Over/underflow */ if(UNLIKELY(shift >= 63 || shift < -52)) return 0; mant = (conv.i64&I64(0xfffffffffffff)) | I64(0x10000000000000); if(LIKELY(shift < 0)) return (ALint)(mant >> -shift) * sign; return (ALint)(mant << shift) * sign; #else return (ALint)d; #endif } /* Converts ALcomplex to ALphasor */ static inline ALphasor rect2polar(ALcomplex number) { ALphasor polar; polar.Amplitude = sqrt(number.Real*number.Real + number.Imag*number.Imag); polar.Phase = atan2(number.Imag, number.Real); return polar; } /* Converts ALphasor to ALcomplex */ static inline ALcomplex polar2rect(ALphasor number) { ALcomplex cartesian; cartesian.Real = number.Amplitude * cos(number.Phase); cartesian.Imag = number.Amplitude * sin(number.Phase); return cartesian; } /* Addition of two complex numbers (ALcomplex format) */ static inline ALcomplex complex_add(ALcomplex a, ALcomplex b) { ALcomplex result; result.Real = a.Real + b.Real; result.Imag = a.Imag + b.Imag; return result; } /* Subtraction of two complex numbers (ALcomplex format) */ static inline ALcomplex complex_sub(ALcomplex a, ALcomplex b) { ALcomplex result; result.Real = a.Real - b.Real; result.Imag = a.Imag - b.Imag; return result; } /* Multiplication of two complex numbers (ALcomplex format) */ static inline ALcomplex complex_mult(ALcomplex a, ALcomplex b) { ALcomplex result; result.Real = a.Real*b.Real - a.Imag*b.Imag; result.Imag = a.Imag*b.Real + a.Real*b.Imag; return result; } /* Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is * FFT and 1 is iFFT (inverse). Fills FFTBuffer[0...FFTSize-1] with the * Discrete Fourier Transform (DFT) of the time domain data stored in * FFTBuffer[0...FFTSize-1]. FFTBuffer is an array of complex numbers * (ALcomplex), FFTSize MUST BE power of two. */ static inline ALvoid FFT(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign) { ALsizei i, j, k, mask, step, step2; ALcomplex temp, u, w; ALdouble arg; /* Bit-reversal permutation applied to a sequence of FFTSize items */ for(i = 1;i < FFTSize-1;i++) { for(mask = 0x1, j = 0;mask < FFTSize;mask <<= 1) { if((i&mask) != 0) j++; j <<= 1; } j >>= 1; if(i < j) { temp = FFTBuffer[i]; FFTBuffer[i] = FFTBuffer[j]; FFTBuffer[j] = temp; } } /* Iterative form of Danielson–Lanczos lemma */ for(i = 1, step = 2;i < FFTSize;i<<=1, step<<=1) { step2 = step >> 1; arg = M_PI / step2; w.Real = cos(arg); w.Imag = sin(arg) * Sign; u.Real = 1.0; u.Imag = 0.0; for(j = 0;j < step2;j++) { for(k = j;k < FFTSize;k+=step) { temp = complex_mult(FFTBuffer[k+step2], u); FFTBuffer[k+step2] = complex_sub(FFTBuffer[k], temp); FFTBuffer[k] = complex_add(FFTBuffer[k], temp); } u = complex_mult(u, w); } } } static void ALpshifterState_Construct(ALpshifterState *state) { ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); SET_VTABLE2(ALpshifterState, ALeffectState, state); alcall_once(&HannInitOnce, InitHannWindow); } static ALvoid ALpshifterState_Destruct(ALpshifterState *state) { ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); } static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device) { /* (Re-)initializing parameters and clear the buffers. */ state->count = FIFO_LATENCY; state->PitchShiftI = FRACTIONONE; state->PitchShift = 1.0f; state->FreqPerBin = device->Frequency / (ALfloat)STFT_SIZE; memset(state->InFIFO, 0, sizeof(state->InFIFO)); memset(state->OutFIFO, 0, sizeof(state->OutFIFO)); memset(state->FFTbuffer, 0, sizeof(state->FFTbuffer)); memset(state->LastPhase, 0, sizeof(state->LastPhase)); memset(state->SumPhase, 0, sizeof(state->SumPhase)); memset(state->OutputAccum, 0, sizeof(state->OutputAccum)); memset(state->Analysis_buffer, 0, sizeof(state->Analysis_buffer)); memset(state->Syntesis_buffer, 0, sizeof(state->Syntesis_buffer)); memset(state->CurrentGains, 0, sizeof(state->CurrentGains)); memset(state->TargetGains, 0, sizeof(state->TargetGains)); return AL_TRUE; } static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) { const ALCdevice *device = context->Device; ALfloat coeffs[MAX_AMBI_COEFFS]; float pitch; pitch = powf(2.0f, (ALfloat)(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f ); state->PitchShiftI = (ALsizei)(pitch*FRACTIONONE + 0.5f); state->PitchShift = state->PitchShiftI * (1.0f/FRACTIONONE); CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs); ComputeDryPanGains(&device->Dry, coeffs, slot->Params.Gain, state->TargetGains); } static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) { /* Pitch shifter engine based on the work of Stephan Bernsee. * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/ */ static const ALdouble expected = M_PI*2.0 / OVERSAMP; const ALdouble freq_per_bin = state->FreqPerBin; ALfloat *restrict bufferOut = state->BufferOut; ALsizei count = state->count; ALsizei i, j, k; for(i = 0;i < SamplesToDo;) { do { /* Fill FIFO buffer with samples data */ state->InFIFO[count] = SamplesIn[0][i]; bufferOut[i] = state->OutFIFO[count - FIFO_LATENCY]; count++; } while(++i < SamplesToDo && count < STFT_SIZE); /* Check whether FIFO buffer is filled */ if(count < STFT_SIZE) break; count = FIFO_LATENCY; /* Real signal windowing and store in FFTbuffer */ for(k = 0;k < STFT_SIZE;k++) { state->FFTbuffer[k].Real = state->InFIFO[k] * HannWindow[k]; state->FFTbuffer[k].Imag = 0.0; } /* ANALYSIS */ /* Apply FFT to FFTbuffer data */ FFT(state->FFTbuffer, STFT_SIZE, -1.0); /* Analyze the obtained data. Since the real FFT is symmetric, only * STFT_HALF_SIZE+1 samples are needed. */ for(k = 0;k < STFT_HALF_SIZE+1;k++) { ALphasor component; ALdouble tmp; ALint qpd; /* Compute amplitude and phase */ component = rect2polar(state->FFTbuffer[k]); /* Compute phase difference and subtract expected phase difference */ tmp = (component.Phase - state->LastPhase[k]) - k*expected; /* Map delta phase into +/- Pi interval */ qpd = double2int(tmp / M_PI); tmp -= M_PI * (qpd + (qpd%2)); /* Get deviation from bin frequency from the +/- Pi interval */ tmp /= expected; /* Compute the k-th partials' true frequency, twice the amplitude * for maintain the gain (because half of bins are used) and store * amplitude and true frequency in analysis buffer. */ state->Analysis_buffer[k].Amplitude = 2.0 * component.Amplitude; state->Analysis_buffer[k].Frequency = (k + tmp) * freq_per_bin; /* Store actual phase[k] for the calculations in the next frame*/ state->LastPhase[k] = component.Phase; } /* PROCESSING */ /* pitch shifting */ for(k = 0;k < STFT_HALF_SIZE+1;k++) { state->Syntesis_buffer[k].Amplitude = 0.0; state->Syntesis_buffer[k].Frequency = 0.0; } for(k = 0;k < STFT_HALF_SIZE+1;k++) { j = (k*state->PitchShiftI) >> FRACTIONBITS; if(j >= STFT_HALF_SIZE+1) break; state->Syntesis_buffer[j].Amplitude += state->Analysis_buffer[k].Amplitude; state->Syntesis_buffer[j].Frequency = state->Analysis_buffer[k].Frequency * state->PitchShift; } /* SYNTHESIS */ /* Synthesis the processing data */ for(k = 0;k < STFT_HALF_SIZE+1;k++) { ALphasor component; ALdouble tmp; /* Compute bin deviation from scaled freq */ tmp = state->Syntesis_buffer[k].Frequency/freq_per_bin - k; /* Calculate actual delta phase and accumulate it to get bin phase */ state->SumPhase[k] += (k + tmp) * expected; component.Amplitude = state->Syntesis_buffer[k].Amplitude; component.Phase = state->SumPhase[k]; /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/ state->FFTbuffer[k] = polar2rect(component); } /* zero negative frequencies for recontruct a real signal */ for(k = STFT_HALF_SIZE+1;k < STFT_SIZE;k++) { state->FFTbuffer[k].Real = 0.0; state->FFTbuffer[k].Imag = 0.0; } /* Apply iFFT to buffer data */ FFT(state->FFTbuffer, STFT_SIZE, 1.0); /* Windowing and add to output */ for(k = 0;k < STFT_SIZE;k++) state->OutputAccum[k] += HannWindow[k] * state->FFTbuffer[k].Real / (0.5 * STFT_HALF_SIZE * OVERSAMP); /* Shift accumulator, input & output FIFO */ for(k = 0;k < STFT_STEP;k++) state->OutFIFO[k] = (ALfloat)state->OutputAccum[k]; for(j = 0;k < STFT_SIZE;k++,j++) state->OutputAccum[j] = state->OutputAccum[k]; for(;j < STFT_SIZE;j++) state->OutputAccum[j] = 0.0; for(k = 0;k < FIFO_LATENCY;k++) state->InFIFO[k] = state->InFIFO[k+STFT_STEP]; } state->count = count; /* Now, mix the processed sound data to the output. */ MixSamples(bufferOut, NumChannels, SamplesOut, state->CurrentGains, state->TargetGains, maxi(SamplesToDo, 512), 0, SamplesToDo); } typedef struct PshifterStateFactory { DERIVE_FROM_TYPE(EffectStateFactory); } PshifterStateFactory; static ALeffectState *PshifterStateFactory_create(PshifterStateFactory *UNUSED(factory)) { ALpshifterState *state; NEW_OBJ0(state, ALpshifterState)(); if(!state) return NULL; return STATIC_CAST(ALeffectState, state); } DEFINE_EFFECTSTATEFACTORY_VTABLE(PshifterStateFactory); EffectStateFactory *PshifterStateFactory_getFactory(void) { static PshifterStateFactory PshifterFactory = { { GET_VTABLE2(PshifterStateFactory, EffectStateFactory) } }; return STATIC_CAST(EffectStateFactory, &PshifterFactory); } void ALpshifter_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val)) { alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param ); } void ALpshifter_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat *UNUSED(vals)) { alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param ); } void ALpshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { ALeffectProps *props = &effect->Props; switch(param) { case AL_PITCH_SHIFTER_COARSE_TUNE: if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE)) SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range"); props->Pshifter.CoarseTune = val; break; case AL_PITCH_SHIFTER_FINE_TUNE: if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE)) SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range"); props->Pshifter.FineTune = val; break; default: alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); } } void ALpshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { ALpshifter_setParami(effect, context, param, vals[0]); } void ALpshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { const ALeffectProps *props = &effect->Props; switch(param) { case AL_PITCH_SHIFTER_COARSE_TUNE: *val = (ALint)props->Pshifter.CoarseTune; break; case AL_PITCH_SHIFTER_FINE_TUNE: *val = (ALint)props->Pshifter.FineTune; break; default: alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); } } void ALpshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { ALpshifter_getParami(effect, context, param, vals); } void ALpshifter_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(val)) { alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); } void ALpshifter_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(vals)) { alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); } DEFINE_ALEFFECT_VTABLE(ALpshifter);