/** * OpenAL cross platform audio library * Copyright (C) 2011 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alSource.h" #include "alu.h" #include "hrtf.h" /* Current data set limits defined by the makehrtf utility. */ #define MIN_IR_SIZE (8) #define MAX_IR_SIZE (128) #define MOD_IR_SIZE (8) #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (128) struct Hrtf { ALuint sampleRate; ALuint irSize; ALubyte evCount; const ALubyte *azCount; const ALushort *evOffset; const ALshort *coeffs; const ALubyte *delays; struct Hrtf *next; }; static const ALchar magicMarker00[8] = "MinPHR00"; static const ALchar magicMarker01[8] = "MinPHR01"; static struct Hrtf *LoadedHrtfs = NULL; /* Calculate the elevation indices given the polar elevation in radians. * This will return two indices between 0 and (evcount - 1) and an * interpolation factor between 0.0 and 1.0. */ static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu) { ev = (F_PI_2 + ev) * (evcount-1) / F_PI; evidx[0] = fastf2u(ev); evidx[1] = minu(evidx[0] + 1, evcount-1); *evmu = ev - evidx[0]; } /* Calculate the azimuth indices given the polar azimuth in radians. This * will return two indices between 0 and (azcount - 1) and an interpolation * factor between 0.0 and 1.0. */ static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu) { az = (F_2PI + az) * azcount / (F_2PI); azidx[0] = fastf2u(az) % azcount; azidx[1] = (azidx[0] + 1) % azcount; *azmu = az - floorf(az); } /* Calculates static HRIR coefficients and delays for the given polar * elevation and azimuth in radians. Linear interpolation is used to * increase the apparent resolution of the HRIR data set. The coefficients * are also normalized and attenuated by the specified gain. */ void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat (*coeffs)[2], ALuint *delays) { ALuint evidx[2], lidx[4], ridx[4]; ALfloat mu[3], blend[4]; ALuint i; /* Claculate elevation indices and interpolation factor. */ CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]); for(i = 0;i < 2;i++) { ALuint azcount = Hrtf->azCount[evidx[i]]; ALuint evoffset = Hrtf->evOffset[evidx[i]]; ALuint azidx[2]; /* Calculate azimuth indices and interpolation factor for this elevation. */ CalcAzIndices(azcount, azimuth, azidx, &mu[i]); /* Calculate a set of linear HRIR indices for left and right channels. */ lidx[i*2 + 0] = evoffset + azidx[0]; lidx[i*2 + 1] = evoffset + azidx[1]; ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount); ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount); } /* Calculate 4 blending weights for 2D bilinear interpolation. */ blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]); blend[1] = ( mu[0]) * (1.0f-mu[2]); blend[2] = (1.0f-mu[1]) * ( mu[2]); blend[3] = ( mu[1]) * ( mu[2]); /* Calculate the HRIR delays using linear interpolation. */ delays[0] = fastf2u(Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] + Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3] + 0.5f); delays[1] = fastf2u(Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] + Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3] + 0.5f); /* Calculate the sample offsets for the HRIR indices. */ lidx[0] *= Hrtf->irSize; lidx[1] *= Hrtf->irSize; lidx[2] *= Hrtf->irSize; lidx[3] *= Hrtf->irSize; ridx[0] *= Hrtf->irSize; ridx[1] *= Hrtf->irSize; ridx[2] *= Hrtf->irSize; ridx[3] *= Hrtf->irSize; for(i = 0;i < Hrtf->irSize;i++) { ALfloat c; c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = c * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = c * (1.0f/32767.0f); } } static struct Hrtf *LoadHrtf00(FILE *f, ALuint deviceRate) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALushort irSize = 0; ALubyte evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; ALubyte *delays = NULL; ALuint i, j; rate = fgetc(f); rate |= fgetc(f)<<8; rate |= fgetc(f)<<16; rate |= fgetc(f)<<24; irCount = fgetc(f); irCount |= fgetc(f)<<8; irSize = fgetc(f); irSize |= fgetc(f)<<8; evCount = fgetc(f); if(rate != deviceRate) { ERR("HRIR rate does not match device rate: rate=%d (%d)\n", rate, deviceRate); failed = AL_TRUE; } if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { evOffset[0] = fgetc(f); evOffset[0] |= fgetc(f)<<8; for(i = 1;i < evCount;i++) { evOffset[i] = fgetc(f); evOffset[i] |= fgetc(f)<<8; if(evOffset[i] <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]); failed = AL_TRUE; } azCount[i-1] = evOffset[i] - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(irCount <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n", i-1, evOffset[i-1], irCount); failed = AL_TRUE; } azCount[i-1] = irCount - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(!failed) { coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { ALshort coeff; coeff = fgetc(f); coeff |= fgetc(f)<<8; coeffs[i+j] = coeff; } } for(i = 0;i < irCount;i++) { delays[i] = fgetc(f); if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } if(feof(f)) { ERR("Premature end of data\n"); failed = AL_TRUE; } } if(!failed) { Hrtf = malloc(sizeof(struct Hrtf)); if(Hrtf == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; Hrtf->azCount = azCount; Hrtf->evOffset = evOffset; Hrtf->coeffs = coeffs; Hrtf->delays = delays; Hrtf->next = NULL; return Hrtf; } free(azCount); free(evOffset); free(coeffs); free(delays); return NULL; } static struct Hrtf *LoadHrtf01(FILE *f, ALuint deviceRate) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALubyte irSize = 0, evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; ALubyte *delays = NULL; ALuint i, j; rate = fgetc(f); rate |= fgetc(f)<<8; rate |= fgetc(f)<<16; rate |= fgetc(f)<<24; irSize = fgetc(f); evCount = fgetc(f); if(rate != deviceRate) { ERR("HRIR rate does not match device rate: rate=%d (%d)\n", rate, deviceRate); failed = AL_TRUE; } if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { for(i = 0;i < evCount;i++) { azCount[i] = fgetc(f); if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } } if(!failed) { evOffset[0] = 0; irCount = azCount[0]; for(i = 1;i < evCount;i++) { evOffset[i] = evOffset[i-1] + azCount[i-1]; irCount += azCount[i]; } coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { ALshort coeff; coeff = fgetc(f); coeff |= fgetc(f)<<8; coeffs[i+j] = coeff; } } for(i = 0;i < irCount;i++) { delays[i] = fgetc(f); if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } if(feof(f)) { ERR("Premature end of data\n"); failed = AL_TRUE; } } if(!failed) { Hrtf = malloc(sizeof(struct Hrtf)); if(Hrtf == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; Hrtf->azCount = azCount; Hrtf->evOffset = evOffset; Hrtf->coeffs = coeffs; Hrtf->delays = delays; Hrtf->next = NULL; return Hrtf; } free(azCount); free(evOffset); free(coeffs); free(delays); return NULL; } static struct Hrtf *LoadHrtf(ALuint deviceRate) { const char *fnamelist = "default-%r.mhr"; ConfigValueStr(NULL, "hrtf_tables", &fnamelist); while(*fnamelist != '\0') { struct Hrtf *Hrtf = NULL; char fname[PATH_MAX]; const char *next; ALchar magic[8]; ALuint i; FILE *f; i = 0; while(isspace(*fnamelist) || *fnamelist == ',') fnamelist++; next = fnamelist; while(*(fnamelist=next) != '\0' && *fnamelist != ',') { next = strpbrk(fnamelist, "%,"); while(fnamelist != next && *fnamelist && i < sizeof(fname)) fname[i++] = *(fnamelist++); if(!next || *next == ',') break; /* *next == '%' */ next++; if(*next == 'r') { int wrote = snprintf(&fname[i], sizeof(fname)-i, "%u", deviceRate); i += minu(wrote, sizeof(fname)-i); next++; } else if(*next == '%') { if(i < sizeof(fname)) fname[i++] = '%'; next++; } else ERR("Invalid marker '%%%c'\n", *next); } i = minu(i, sizeof(fname)-1); fname[i] = '\0'; while(i > 0 && isspace(fname[i-1])) i--; fname[i] = '\0'; if(fname[0] == '\0') continue; TRACE("Loading %s...\n", fname); f = OpenDataFile(fname, "openal/hrtf"); if(f == NULL) { ERR("Could not open %s\n", fname); continue; } if(fread(magic, 1, sizeof(magic), f) != sizeof(magic)) ERR("Failed to read header from %s\n", fname); else { if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); Hrtf = LoadHrtf00(f, deviceRate); } else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); Hrtf = LoadHrtf01(f, deviceRate); } else ERR("Invalid header in %s: \"%.8s\"\n", fname, magic); } fclose(f); f = NULL; if(Hrtf) { Hrtf->next = LoadedHrtfs; LoadedHrtfs = Hrtf; TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), Hrtf->sampleRate); return Hrtf; } ERR("Failed to load %s\n", fname); } return NULL; } const struct Hrtf *GetHrtf(enum DevFmtChannels chans, ALCuint srate) { if(chans == DevFmtStereo) { struct Hrtf *Hrtf = LoadedHrtfs; while(Hrtf != NULL) { if(srate == Hrtf->sampleRate) return Hrtf; Hrtf = Hrtf->next; } Hrtf = LoadHrtf(srate); if(Hrtf != NULL) return Hrtf; } ERR("Incompatible format: %s %uhz\n", DevFmtChannelsString(chans), srate); return NULL; } ALCboolean FindHrtfFormat(enum DevFmtChannels *chans, ALCuint *srate) { const struct Hrtf *hrtf = LoadedHrtfs; while(hrtf != NULL) { if(*srate == hrtf->sampleRate) break; hrtf = hrtf->next; } if(hrtf == NULL) { hrtf = LoadHrtf(*srate); if(hrtf == NULL) return ALC_FALSE; } *chans = DevFmtStereo; *srate = hrtf->sampleRate; return ALC_TRUE; } void FreeHrtfs(void) { struct Hrtf *Hrtf = NULL; while((Hrtf=LoadedHrtfs) != NULL) { LoadedHrtfs = Hrtf->next; free((void*)Hrtf->azCount); free((void*)Hrtf->evOffset); free((void*)Hrtf->coeffs); free((void*)Hrtf->delays); free(Hrtf); } } ALuint GetHrtfIrSize (const struct Hrtf *Hrtf) { return Hrtf->irSize; }