/** * OpenAL cross platform audio library * Copyright (C) 2011 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alSource.h" #include "alu.h" #include "hrtf.h" #include "alconfig.h" #include "filters/splitter.h" #include "compat.h" #include "almalloc.h" /* Current data set limits defined by the makehrtf utility. */ #define MIN_IR_SIZE (8) #define MAX_IR_SIZE (512) #define MOD_IR_SIZE (8) #define MIN_FD_COUNT (1) #define MAX_FD_COUNT (16) #define MIN_FD_DISTANCE (50) #define MAX_FD_DISTANCE (2500) #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (128) #define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1) struct HrtfEntry { struct HrtfEntry *next; struct Hrtf *handle; char filename[]; }; static const ALchar magicMarker00[8] = "MinPHR00"; static const ALchar magicMarker01[8] = "MinPHR01"; static const ALchar magicMarker02[8] = "MinPHR02"; /* First value for pass-through coefficients (remaining are 0), used for omni- * directional sounds. */ static const ALfloat PassthruCoeff = 0.707106781187f/*sqrt(0.5)*/; static ATOMIC_FLAG LoadedHrtfLock = ATOMIC_FLAG_INIT; static struct HrtfEntry *LoadedHrtfs = NULL; /* Calculate the elevation index given the polar elevation in radians. This * will return an index between 0 and (evcount - 1). Assumes the FPU is in * round-to-zero mode. */ static ALsizei CalcEvIndex(ALsizei evcount, ALfloat ev, ALfloat *mu) { ALsizei idx; ev = (F_PI_2+ev) * (evcount-1) / F_PI; idx = mini(fastf2i(ev), evcount-1); *mu = ev - idx; return idx; } /* Calculate the azimuth index given the polar azimuth in radians. This will * return an index between 0 and (azcount - 1). Assumes the FPU is in round-to- * zero mode. */ static ALsizei CalcAzIndex(ALsizei azcount, ALfloat az, ALfloat *mu) { ALsizei idx; az = (F_TAU+az) * azcount / F_TAU; idx = fastf2i(az) % azcount; *mu = az - floorf(az); return idx; } /* Calculates static HRIR coefficients and delays for the given polar elevation * and azimuth in radians. The coefficients are normalized. */ void GetHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread, ALfloat (*restrict coeffs)[2], ALsizei *delays) { ALsizei evidx, azidx, idx[4]; ALsizei evoffset; ALfloat emu, amu[2]; ALfloat blend[4]; ALfloat dirfact; ALsizei i, c; dirfact = 1.0f - (spread / F_TAU); /* Claculate the lower elevation index. */ evidx = CalcEvIndex(Hrtf->evCount, elevation, &emu); evoffset = Hrtf->evOffset[evidx]; /* Calculate lower azimuth index. */ azidx= CalcAzIndex(Hrtf->azCount[evidx], azimuth, &amu[0]); /* Calculate the lower HRIR indices. */ idx[0] = evoffset + azidx; idx[1] = evoffset + ((azidx+1) % Hrtf->azCount[evidx]); if(evidx < Hrtf->evCount-1) { /* Increment elevation to the next (upper) index. */ evidx++; evoffset = Hrtf->evOffset[evidx]; /* Calculate upper azimuth index. */ azidx = CalcAzIndex(Hrtf->azCount[evidx], azimuth, &amu[1]); /* Calculate the upper HRIR indices. */ idx[2] = evoffset + azidx; idx[3] = evoffset + ((azidx+1) % Hrtf->azCount[evidx]); } else { /* If the lower elevation is the top index, the upper elevation is the * same as the lower. */ amu[1] = amu[0]; idx[2] = idx[0]; idx[3] = idx[1]; } /* Calculate bilinear blending weights, attenuated according to the * directional panning factor. */ blend[0] = (1.0f-emu) * (1.0f-amu[0]) * dirfact; blend[1] = (1.0f-emu) * ( amu[0]) * dirfact; blend[2] = ( emu) * (1.0f-amu[1]) * dirfact; blend[3] = ( emu) * ( amu[1]) * dirfact; /* Calculate the blended HRIR delays. */ delays[0] = fastf2i( Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] + Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3] + 0.5f ); delays[1] = fastf2i( Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] + Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3] + 0.5f ); /* Calculate the sample offsets for the HRIR indices. */ idx[0] *= Hrtf->irSize; idx[1] *= Hrtf->irSize; idx[2] *= Hrtf->irSize; idx[3] *= Hrtf->irSize; ASSUME(Hrtf->irSize >= MIN_IR_SIZE && (Hrtf->irSize%MOD_IR_SIZE) == 0); coeffs = ASSUME_ALIGNED(coeffs, 16); /* Calculate the blended HRIR coefficients. */ coeffs[0][0] = PassthruCoeff * (1.0f-dirfact); coeffs[0][1] = PassthruCoeff * (1.0f-dirfact); for(i = 1;i < Hrtf->irSize;i++) { coeffs[i][0] = 0.0f; coeffs[i][1] = 0.0f; } for(c = 0;c < 4;c++) { const ALfloat (*restrict srccoeffs)[2] = ASSUME_ALIGNED(Hrtf->coeffs+idx[c], 16); for(i = 0;i < Hrtf->irSize;i++) { coeffs[i][0] += srccoeffs[i][0] * blend[c]; coeffs[i][1] += srccoeffs[i][1] * blend[c]; } } } void BuildBFormatHrtf(const struct Hrtf *Hrtf, DirectHrtfState *state, ALsizei NumChannels, const struct AngularPoint *AmbiPoints, const ALfloat (*restrict AmbiMatrix)[MAX_AMBI_COEFFS], ALsizei AmbiCount, const ALfloat *restrict AmbiOrderHFGain) { /* Set this to 2 for dual-band HRTF processing. May require a higher quality * band-splitter, or better calculation of the new IR length to deal with the * tail generated by the filter. */ #define NUM_BANDS 2 BandSplitter splitter; ALdouble (*tmpres)[HRIR_LENGTH][2]; ALsizei idx[HRTF_AMBI_MAX_CHANNELS]; ALsizei min_delay = HRTF_HISTORY_LENGTH; ALfloat temps[3][HRIR_LENGTH]; ALsizei max_length = 0; ALsizei i, c, b; for(c = 0;c < AmbiCount;c++) { ALuint evidx, azidx; ALuint evoffset; ALuint azcount; /* Calculate elevation index. */ evidx = (ALsizei)floorf((F_PI_2 + AmbiPoints[c].Elev) * (Hrtf->evCount-1)/F_PI + 0.5f); evidx = clampi(evidx, 0, Hrtf->evCount-1); azcount = Hrtf->azCount[evidx]; evoffset = Hrtf->evOffset[evidx]; /* Calculate azimuth index for this elevation. */ azidx = (ALsizei)floorf((F_TAU+AmbiPoints[c].Azim) * azcount/F_TAU + 0.5f) % azcount; /* Calculate indices for left and right channels. */ idx[c] = evoffset + azidx; min_delay = mini(min_delay, mini(Hrtf->delays[idx[c]][0], Hrtf->delays[idx[c]][1])); } tmpres = al_calloc(16, NumChannels * sizeof(*tmpres)); memset(temps, 0, sizeof(temps)); bandsplit_init(&splitter, 400.0f / (ALfloat)Hrtf->sampleRate); for(c = 0;c < AmbiCount;c++) { const ALfloat (*fir)[2] = &Hrtf->coeffs[idx[c] * Hrtf->irSize]; ALsizei ldelay = Hrtf->delays[idx[c]][0] - min_delay; ALsizei rdelay = Hrtf->delays[idx[c]][1] - min_delay; max_length = maxi(max_length, mini(maxi(ldelay, rdelay) + Hrtf->irSize, HRIR_LENGTH) ); if(NUM_BANDS == 1) { for(i = 0;i < NumChannels;++i) { ALdouble mult = (ALdouble)AmbiOrderHFGain[(ALsizei)floor(sqrt(i))] * AmbiMatrix[c][i]; ALsizei lidx = ldelay, ridx = rdelay; ALsizei j = 0; while(lidx < HRIR_LENGTH && ridx < HRIR_LENGTH && j < Hrtf->irSize) { tmpres[i][lidx++][0] += fir[j][0] * mult; tmpres[i][ridx++][1] += fir[j][1] * mult; j++; } } } else { /* Band-split left HRIR into low and high frequency responses. */ bandsplit_clear(&splitter); for(i = 0;i < Hrtf->irSize;i++) temps[2][i] = fir[i][0]; bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH); /* Apply left ear response with delay. */ for(i = 0;i < NumChannels;++i) { ALfloat hfgain = AmbiOrderHFGain[(ALsizei)floor(sqrt(i))]; for(b = 0;b < NUM_BANDS;b++) { ALdouble mult = AmbiMatrix[c][i] * (ALdouble)((b==0) ? hfgain : 1.0); ALsizei lidx = ldelay; ALsizei j = 0; while(lidx < HRIR_LENGTH) tmpres[i][lidx++][0] += temps[b][j++] * mult; } } /* Band-split right HRIR into low and high frequency responses. */ bandsplit_clear(&splitter); for(i = 0;i < Hrtf->irSize;i++) temps[2][i] = fir[i][1]; bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH); /* Apply right ear response with delay. */ for(i = 0;i < NumChannels;++i) { ALfloat hfgain = AmbiOrderHFGain[(ALsizei)floor(sqrt(i))]; for(b = 0;b < NUM_BANDS;b++) { ALdouble mult = AmbiMatrix[c][i] * (ALdouble)((b==0) ? hfgain : 1.0); ALsizei ridx = rdelay; ALsizei j = 0; while(ridx < HRIR_LENGTH) tmpres[i][ridx++][1] += temps[b][j++] * mult; } } } } /* Round up to the next IR size multiple. */ max_length += MOD_IR_SIZE-1; max_length -= max_length%MOD_IR_SIZE; for(i = 0;i < NumChannels;++i) { int idx; for(idx = 0;idx < HRIR_LENGTH;idx++) { state->Chan[i].Coeffs[idx][0] = (ALfloat)tmpres[i][idx][0]; state->Chan[i].Coeffs[idx][1] = (ALfloat)tmpres[i][idx][1]; } } al_free(tmpres); tmpres = NULL; TRACE("Skipped delay: %d, new FIR length: %d\n", min_delay, max_length); state->IrSize = max_length; #undef NUM_BANDS } static struct Hrtf *CreateHrtfStore(ALuint rate, ALsizei irSize, ALfloat distance, ALsizei evCount, ALsizei irCount, const ALubyte *azCount, const ALushort *evOffset, const ALfloat (*coeffs)[2], const ALubyte (*delays)[2], const char *filename) { struct Hrtf *Hrtf; size_t total; total = sizeof(struct Hrtf); total += sizeof(Hrtf->azCount[0])*evCount; total = RoundUp(total, sizeof(ALushort)); /* Align for ushort fields */ total += sizeof(Hrtf->evOffset[0])*evCount; total = RoundUp(total, 16); /* Align for coefficients using SIMD */ total += sizeof(Hrtf->coeffs[0])*irSize*irCount; total += sizeof(Hrtf->delays[0])*irCount; Hrtf = al_calloc(16, total); if(Hrtf == NULL) ERR("Out of memory allocating storage for %s.\n", filename); else { uintptr_t offset = sizeof(struct Hrtf); char *base = (char*)Hrtf; ALushort *_evOffset; ALubyte *_azCount; ALubyte (*_delays)[2]; ALfloat (*_coeffs)[2]; ALsizei i; InitRef(&Hrtf->ref, 0); Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->distance = distance; Hrtf->evCount = evCount; /* Set up pointers to storage following the main HRTF struct. */ _azCount = (ALubyte*)(base + offset); offset += sizeof(_azCount[0])*evCount; offset = RoundUp(offset, sizeof(ALushort)); /* Align for ushort fields */ _evOffset = (ALushort*)(base + offset); offset += sizeof(_evOffset[0])*evCount; offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */ _coeffs = (ALfloat(*)[2])(base + offset); offset += sizeof(_coeffs[0])*irSize*irCount; _delays = (ALubyte(*)[2])(base + offset); offset += sizeof(_delays[0])*irCount; assert(offset == total); /* Copy input data to storage. */ for(i = 0;i < evCount;i++) _azCount[i] = azCount[i]; for(i = 0;i < evCount;i++) _evOffset[i] = evOffset[i]; for(i = 0;i < irSize*irCount;i++) { _coeffs[i][0] = coeffs[i][0]; _coeffs[i][1] = coeffs[i][1]; } for(i = 0;i < irCount;i++) { _delays[i][0] = delays[i][0]; _delays[i][1] = delays[i][1]; } /* Finally, assign the storage pointers. */ Hrtf->azCount = _azCount; Hrtf->evOffset = _evOffset; Hrtf->coeffs = _coeffs; Hrtf->delays = _delays; } return Hrtf; } static ALubyte GetLE_ALubyte(const ALubyte **data, size_t *len) { ALubyte ret = (*data)[0]; *data += 1; *len -= 1; return ret; } static ALshort GetLE_ALshort(const ALubyte **data, size_t *len) { ALshort ret = (*data)[0] | ((*data)[1]<<8); *data += 2; *len -= 2; return ret; } static ALushort GetLE_ALushort(const ALubyte **data, size_t *len) { ALushort ret = (*data)[0] | ((*data)[1]<<8); *data += 2; *len -= 2; return ret; } static ALint GetLE_ALint24(const ALubyte **data, size_t *len) { ALint ret = (*data)[0] | ((*data)[1]<<8) | ((*data)[2]<<16); *data += 3; *len -= 3; return (ret^0x800000) - 0x800000; } static ALuint GetLE_ALuint(const ALubyte **data, size_t *len) { ALuint ret = (*data)[0] | ((*data)[1]<<8) | ((*data)[2]<<16) | ((*data)[3]<<24); *data += 4; *len -= 4; return ret; } static const ALubyte *Get_ALubytePtr(const ALubyte **data, size_t *len, size_t size) { const ALubyte *ret = *data; *data += size; *len -= size; return ret; } static struct Hrtf *LoadHrtf00(const ALubyte *data, size_t datalen, const char *filename) { struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0; ALushort irCount = 0; ALushort irSize = 0; ALubyte evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALfloat (*coeffs)[2] = NULL; ALubyte (*delays)[2] = NULL; ALsizei i, j; if(datalen < 9) { ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", filename, 9, datalen); return NULL; } rate = GetLE_ALuint(&data, &datalen); irCount = GetLE_ALushort(&data, &datalen); irSize = GetLE_ALushort(&data, &datalen); evCount = GetLE_ALubyte(&data, &datalen); if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; if(datalen < evCount*2u) { ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", filename, evCount*2, datalen); return NULL; } azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { evOffset[0] = GetLE_ALushort(&data, &datalen); for(i = 1;i < evCount;i++) { evOffset[i] = GetLE_ALushort(&data, &datalen); if(evOffset[i] <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]); failed = AL_TRUE; } azCount[i-1] = evOffset[i] - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(irCount <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n", i-1, evOffset[i-1], irCount); failed = AL_TRUE; } azCount[i-1] = irCount - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(!failed) { coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { size_t reqsize = 2*irSize*irCount + irCount; if(datalen < reqsize) { ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT")\n", filename, reqsize, datalen); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount;i++) { for(j = 0;j < irSize;j++) coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f; } for(i = 0;i < irCount;i++) { delays[i][0] = GetLE_ALubyte(&data, &datalen); if(delays[i][0] > MAX_HRIR_DELAY) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } } } if(!failed) { /* Mirror the left ear responses to the right ear. */ for(i = 0;i < evCount;i++) { ALushort evoffset = evOffset[i]; ALubyte azcount = azCount[i]; for(j = 0;j < azcount;j++) { ALsizei lidx = evoffset + j; ALsizei ridx = evoffset + ((azcount-j) % azcount); ALsizei k; for(k = 0;k < irSize;k++) coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; delays[ridx][1] = delays[lidx][0]; } } Hrtf = CreateHrtfStore(rate, irSize, 0.0f, evCount, irCount, azCount, evOffset, coeffs, delays, filename); } free(azCount); free(evOffset); free(coeffs); free(delays); return Hrtf; } static struct Hrtf *LoadHrtf01(const ALubyte *data, size_t datalen, const char *filename) { struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0; ALushort irCount = 0; ALushort irSize = 0; ALubyte evCount = 0; const ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALfloat (*coeffs)[2] = NULL; ALubyte (*delays)[2] = NULL; ALsizei i, j; if(datalen < 6) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 6, datalen); return NULL; } rate = GetLE_ALuint(&data, &datalen); irSize = GetLE_ALubyte(&data, &datalen); evCount = GetLE_ALubyte(&data, &datalen); if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; if(datalen < evCount) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, evCount, datalen); return NULL; } azCount = Get_ALubytePtr(&data, &datalen, evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { for(i = 0;i < evCount;i++) { if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } } if(!failed) { evOffset[0] = 0; irCount = azCount[0]; for(i = 1;i < evCount;i++) { evOffset[i] = evOffset[i-1] + azCount[i-1]; irCount += azCount[i]; } coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { size_t reqsize = 2*irSize*irCount + irCount; if(datalen < reqsize) { ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n", filename, reqsize, datalen); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount;i++) { for(j = 0;j < irSize;j++) coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f; } for(i = 0;i < irCount;i++) { delays[i][0] = GetLE_ALubyte(&data, &datalen); if(delays[i][0] > MAX_HRIR_DELAY) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } } } if(!failed) { /* Mirror the left ear responses to the right ear. */ for(i = 0;i < evCount;i++) { ALushort evoffset = evOffset[i]; ALubyte azcount = azCount[i]; for(j = 0;j < azcount;j++) { ALsizei lidx = evoffset + j; ALsizei ridx = evoffset + ((azcount-j) % azcount); ALsizei k; for(k = 0;k < irSize;k++) coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; delays[ridx][1] = delays[lidx][0]; } } Hrtf = CreateHrtfStore(rate, irSize, 0.0f, evCount, irCount, azCount, evOffset, coeffs, delays, filename); } free(evOffset); free(coeffs); free(delays); return Hrtf; } #define SAMPLETYPE_S16 0 #define SAMPLETYPE_S24 1 #define CHANTYPE_LEFTONLY 0 #define CHANTYPE_LEFTRIGHT 1 static struct Hrtf *LoadHrtf02(const ALubyte *data, size_t datalen, const char *filename) { struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0; ALubyte sampleType; ALubyte channelType; ALushort irCount = 0; ALushort irSize = 0; ALubyte fdCount = 0; ALushort distance = 0; ALubyte evCount = 0; const ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALfloat (*coeffs)[2] = NULL; ALubyte (*delays)[2] = NULL; ALsizei i, j; if(datalen < 8) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 8, datalen); return NULL; } rate = GetLE_ALuint(&data, &datalen); sampleType = GetLE_ALubyte(&data, &datalen); channelType = GetLE_ALubyte(&data, &datalen); irSize = GetLE_ALubyte(&data, &datalen); fdCount = GetLE_ALubyte(&data, &datalen); if(sampleType > SAMPLETYPE_S24) { ERR("Unsupported sample type: %d\n", sampleType); failed = AL_TRUE; } if(channelType > CHANTYPE_LEFTRIGHT) { ERR("Unsupported channel type: %d\n", channelType); failed = AL_TRUE; } if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(fdCount != 1) { ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n", evCount, MIN_FD_COUNT, MAX_FD_COUNT); failed = AL_TRUE; } if(failed) return NULL; for(i = 0;i < fdCount;i++) { if(datalen < 3) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 3, datalen); return NULL; } distance = GetLE_ALushort(&data, &datalen); if(distance < MIN_FD_DISTANCE || distance > MAX_FD_DISTANCE) { ERR("Unsupported field distance: distance=%d (%dmm to %dmm)\n", distance, MIN_FD_DISTANCE, MAX_FD_DISTANCE); failed = AL_TRUE; } evCount = GetLE_ALubyte(&data, &datalen); if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; if(datalen < evCount) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, evCount, datalen); return NULL; } azCount = Get_ALubytePtr(&data, &datalen, evCount); for(j = 0;j < evCount;j++) { if(azCount[j] < MIN_AZ_COUNT || azCount[j] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", j, azCount[j], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } } if(failed) return NULL; evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { evOffset[0] = 0; irCount = azCount[0]; for(i = 1;i < evCount;i++) { evOffset[i] = evOffset[i-1] + azCount[i-1]; irCount += azCount[i]; } coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { size_t reqsize = 2*irSize*irCount + irCount; if(datalen < reqsize) { ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n", filename, reqsize, datalen); failed = AL_TRUE; } } if(!failed) { if(channelType == CHANTYPE_LEFTONLY) { if(sampleType == SAMPLETYPE_S16) for(i = 0;i < irCount;i++) { for(j = 0;j < irSize;j++) coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f; } else if(sampleType == SAMPLETYPE_S24) for(i = 0;i < irCount;i++) { for(j = 0;j < irSize;j++) coeffs[i*irSize + j][0] = GetLE_ALint24(&data, &datalen) / 8388608.0f; } for(i = 0;i < irCount;i++) { delays[i][0] = GetLE_ALubyte(&data, &datalen); if(delays[i][0] > MAX_HRIR_DELAY) { ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } } } else if(channelType == CHANTYPE_LEFTRIGHT) { if(sampleType == SAMPLETYPE_S16) for(i = 0;i < irCount;i++) { for(j = 0;j < irSize;j++) { coeffs[i*irSize + j][0] = GetLE_ALshort(&data, &datalen) / 32768.0f; coeffs[i*irSize + j][1] = GetLE_ALshort(&data, &datalen) / 32768.0f; } } else if(sampleType == SAMPLETYPE_S24) for(i = 0;i < irCount;i++) { for(j = 0;j < irSize;j++) { coeffs[i*irSize + j][0] = GetLE_ALint24(&data, &datalen) / 8388608.0f; coeffs[i*irSize + j][1] = GetLE_ALint24(&data, &datalen) / 8388608.0f; } } for(i = 0;i < irCount;i++) { delays[i][0] = GetLE_ALubyte(&data, &datalen); if(delays[i][0] > MAX_HRIR_DELAY) { ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } delays[i][1] = GetLE_ALubyte(&data, &datalen); if(delays[i][1] > MAX_HRIR_DELAY) { ERR("Invalid delays[%d][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY); failed = AL_TRUE; } } } } if(!failed) { if(channelType == CHANTYPE_LEFTONLY) { /* Mirror the left ear responses to the right ear. */ for(i = 0;i < evCount;i++) { ALushort evoffset = evOffset[i]; ALubyte azcount = azCount[i]; for(j = 0;j < azcount;j++) { ALsizei lidx = evoffset + j; ALsizei ridx = evoffset + ((azcount-j) % azcount); ALsizei k; for(k = 0;k < irSize;k++) coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; delays[ridx][1] = delays[lidx][0]; } } } Hrtf = CreateHrtfStore(rate, irSize, (ALfloat)distance / 1000.0f, evCount, irCount, azCount, evOffset, coeffs, delays, filename ); } free(evOffset); free(coeffs); free(delays); return Hrtf; } static void AddFileEntry(vector_EnumeratedHrtf *list, const_al_string filename) { EnumeratedHrtf entry = { AL_STRING_INIT_STATIC(), NULL }; struct HrtfEntry *loaded_entry; const EnumeratedHrtf *iter; const char *name; const char *ext; int i; /* Check if this file has already been loaded globally. */ loaded_entry = LoadedHrtfs; while(loaded_entry) { if(alstr_cmp_cstr(filename, loaded_entry->filename) == 0) { /* Check if this entry has already been added to the list. */ #define MATCH_ENTRY(i) (loaded_entry == (i)->hrtf) VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_ENTRY); if(iter != VECTOR_END(*list)) { TRACE("Skipping duplicate file entry %s\n", alstr_get_cstr(filename)); return; } #undef MATCH_FNAME break; } loaded_entry = loaded_entry->next; } if(!loaded_entry) { TRACE("Got new file \"%s\"\n", alstr_get_cstr(filename)); loaded_entry = al_calloc(DEF_ALIGN, FAM_SIZE(struct HrtfEntry, filename, alstr_length(filename)+1) ); loaded_entry->next = LoadedHrtfs; loaded_entry->handle = NULL; strcpy(loaded_entry->filename, alstr_get_cstr(filename)); LoadedHrtfs = loaded_entry; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ name = strrchr(alstr_get_cstr(filename), '/'); if(!name) name = strrchr(alstr_get_cstr(filename), '\\'); if(!name) name = alstr_get_cstr(filename); else ++name; ext = strrchr(name, '.'); i = 0; do { if(!ext) alstr_copy_cstr(&entry.name, name); else alstr_copy_range(&entry.name, name, ext); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); alstr_append_cstr(&entry.name, str); } ++i; #define MATCH_NAME(i) (alstr_cmp(entry.name, (i)->name) == 0) VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_NAME); #undef MATCH_NAME } while(iter != VECTOR_END(*list)); entry.hrtf = loaded_entry; TRACE("Adding entry \"%s\" from file \"%s\"\n", alstr_get_cstr(entry.name), alstr_get_cstr(filename)); VECTOR_PUSH_BACK(*list, entry); } /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer * for input instead of opening the given filename. */ static void AddBuiltInEntry(vector_EnumeratedHrtf *list, const_al_string filename, ALuint residx) { EnumeratedHrtf entry = { AL_STRING_INIT_STATIC(), NULL }; struct HrtfEntry *loaded_entry; struct Hrtf *hrtf = NULL; const EnumeratedHrtf *iter; const char *name; const char *ext; int i; loaded_entry = LoadedHrtfs; while(loaded_entry) { if(alstr_cmp_cstr(filename, loaded_entry->filename) == 0) { #define MATCH_ENTRY(i) (loaded_entry == (i)->hrtf) VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_ENTRY); if(iter != VECTOR_END(*list)) { TRACE("Skipping duplicate file entry %s\n", alstr_get_cstr(filename)); return; } #undef MATCH_FNAME break; } loaded_entry = loaded_entry->next; } if(!loaded_entry) { size_t namelen = alstr_length(filename)+32; TRACE("Got new file \"%s\"\n", alstr_get_cstr(filename)); loaded_entry = al_calloc(DEF_ALIGN, FAM_SIZE(struct HrtfEntry, filename, namelen) ); loaded_entry->next = LoadedHrtfs; loaded_entry->handle = hrtf; snprintf(loaded_entry->filename, namelen, "!%u_%s", residx, alstr_get_cstr(filename)); LoadedHrtfs = loaded_entry; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ name = strrchr(alstr_get_cstr(filename), '/'); if(!name) name = strrchr(alstr_get_cstr(filename), '\\'); if(!name) name = alstr_get_cstr(filename); else ++name; ext = strrchr(name, '.'); i = 0; do { if(!ext) alstr_copy_cstr(&entry.name, name); else alstr_copy_range(&entry.name, name, ext); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); alstr_append_cstr(&entry.name, str); } ++i; #define MATCH_NAME(i) (alstr_cmp(entry.name, (i)->name) == 0) VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_NAME); #undef MATCH_NAME } while(iter != VECTOR_END(*list)); entry.hrtf = loaded_entry; TRACE("Adding built-in entry \"%s\"\n", alstr_get_cstr(entry.name)); VECTOR_PUSH_BACK(*list, entry); } #define IDR_DEFAULT_44100_MHR 1 #define IDR_DEFAULT_48000_MHR 2 #ifndef ALSOFT_EMBED_HRTF_DATA static const ALubyte *GetResource(int UNUSED(name), size_t *size) { *size = 0; return NULL; } #else #include "default-44100.mhr.h" #include "default-48000.mhr.h" static const ALubyte *GetResource(int name, size_t *size) { if(name == IDR_DEFAULT_44100_MHR) { *size = sizeof(hrtf_default_44100); return hrtf_default_44100; } if(name == IDR_DEFAULT_48000_MHR) { *size = sizeof(hrtf_default_48000); return hrtf_default_48000; } *size = 0; return NULL; } #endif vector_EnumeratedHrtf EnumerateHrtf(const_al_string devname) { vector_EnumeratedHrtf list = VECTOR_INIT_STATIC(); const char *defaulthrtf = ""; const char *pathlist = ""; bool usedefaults = true; if(ConfigValueStr(alstr_get_cstr(devname), NULL, "hrtf-paths", &pathlist)) { al_string pname = AL_STRING_INIT_STATIC(); while(pathlist && *pathlist) { const char *next, *end; while(isspace(*pathlist) || *pathlist == ',') pathlist++; if(*pathlist == '\0') continue; next = strchr(pathlist, ','); if(next) end = next++; else { end = pathlist + strlen(pathlist); usedefaults = false; } while(end != pathlist && isspace(*(end-1))) --end; if(end != pathlist) { vector_al_string flist; size_t i; alstr_copy_range(&pname, pathlist, end); flist = SearchDataFiles(".mhr", alstr_get_cstr(pname)); for(i = 0;i < VECTOR_SIZE(flist);i++) AddFileEntry(&list, VECTOR_ELEM(flist, i)); VECTOR_FOR_EACH(al_string, flist, alstr_reset); VECTOR_DEINIT(flist); } pathlist = next; } alstr_reset(&pname); } else if(ConfigValueExists(alstr_get_cstr(devname), NULL, "hrtf_tables")) ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n"); if(usedefaults) { al_string ename = AL_STRING_INIT_STATIC(); vector_al_string flist; const ALubyte *rdata; size_t rsize, i; flist = SearchDataFiles(".mhr", "openal/hrtf"); for(i = 0;i < VECTOR_SIZE(flist);i++) AddFileEntry(&list, VECTOR_ELEM(flist, i)); VECTOR_FOR_EACH(al_string, flist, alstr_reset); VECTOR_DEINIT(flist); rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize); if(rdata != NULL && rsize > 0) { alstr_copy_cstr(&ename, "Built-In 44100hz"); AddBuiltInEntry(&list, ename, IDR_DEFAULT_44100_MHR); } rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize); if(rdata != NULL && rsize > 0) { alstr_copy_cstr(&ename, "Built-In 48000hz"); AddBuiltInEntry(&list, ename, IDR_DEFAULT_48000_MHR); } alstr_reset(&ename); } if(VECTOR_SIZE(list) > 1 && ConfigValueStr(alstr_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf)) { const EnumeratedHrtf *iter; /* Find the preferred HRTF and move it to the front of the list. */ #define FIND_ENTRY(i) (alstr_cmp_cstr((i)->name, defaulthrtf) == 0) VECTOR_FIND_IF(iter, const EnumeratedHrtf, list, FIND_ENTRY); #undef FIND_ENTRY if(iter == VECTOR_END(list)) WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf); else if(iter != VECTOR_BEGIN(list)) { EnumeratedHrtf entry = *iter; memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0), (iter-VECTOR_BEGIN(list))*sizeof(EnumeratedHrtf)); VECTOR_ELEM(list,0) = entry; } } return list; } void FreeHrtfList(vector_EnumeratedHrtf *list) { #define CLEAR_ENTRY(i) alstr_reset(&(i)->name) VECTOR_FOR_EACH(EnumeratedHrtf, *list, CLEAR_ENTRY); VECTOR_DEINIT(*list); #undef CLEAR_ENTRY } struct Hrtf *GetLoadedHrtf(struct HrtfEntry *entry) { struct Hrtf *hrtf = NULL; struct FileMapping fmap; const ALubyte *rdata; const char *name; ALuint residx; size_t rsize; char ch; while(ATOMIC_FLAG_TEST_AND_SET(&LoadedHrtfLock, almemory_order_seq_cst)) althrd_yield(); if(entry->handle) { hrtf = entry->handle; Hrtf_IncRef(hrtf); goto done; } fmap.ptr = NULL; fmap.len = 0; if(sscanf(entry->filename, "!%u%c", &residx, &ch) == 2 && ch == '_') { name = strchr(entry->filename, ch)+1; TRACE("Loading %s...\n", name); rdata = GetResource(residx, &rsize); if(rdata == NULL || rsize == 0) { ERR("Could not get resource %u, %s\n", residx, name); goto done; } } else { name = entry->filename; TRACE("Loading %s...\n", entry->filename); fmap = MapFileToMem(entry->filename); if(fmap.ptr == NULL) { ERR("Could not open %s\n", entry->filename); goto done; } rdata = fmap.ptr; rsize = fmap.len; } if(rsize < sizeof(magicMarker02)) ERR("%s data is too short ("SZFMT" bytes)\n", name, rsize); else if(memcmp(rdata, magicMarker02, sizeof(magicMarker02)) == 0) { TRACE("Detected data set format v2\n"); hrtf = LoadHrtf02(rdata+sizeof(magicMarker02), rsize-sizeof(magicMarker02), name ); } else if(memcmp(rdata, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); hrtf = LoadHrtf01(rdata+sizeof(magicMarker01), rsize-sizeof(magicMarker01), name ); } else if(memcmp(rdata, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); hrtf = LoadHrtf00(rdata+sizeof(magicMarker00), rsize-sizeof(magicMarker00), name ); } else ERR("Invalid header in %s: \"%.8s\"\n", name, (const char*)rdata); if(fmap.ptr) UnmapFileMem(&fmap); if(!hrtf) { ERR("Failed to load %s\n", name); goto done; } entry->handle = hrtf; Hrtf_IncRef(hrtf); TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); done: ATOMIC_FLAG_CLEAR(&LoadedHrtfLock, almemory_order_seq_cst); return hrtf; } void Hrtf_IncRef(struct Hrtf *hrtf) { uint ref = IncrementRef(&hrtf->ref); TRACEREF("%p increasing refcount to %u\n", hrtf, ref); } void Hrtf_DecRef(struct Hrtf *hrtf) { struct HrtfEntry *Hrtf; uint ref = DecrementRef(&hrtf->ref); TRACEREF("%p decreasing refcount to %u\n", hrtf, ref); if(ref == 0) { while(ATOMIC_FLAG_TEST_AND_SET(&LoadedHrtfLock, almemory_order_seq_cst)) althrd_yield(); Hrtf = LoadedHrtfs; while(Hrtf != NULL) { /* Need to double-check that it's still unused, as another device * could've reacquired this HRTF after its reference went to 0 and * before the lock was taken. */ if(hrtf == Hrtf->handle && ReadRef(&hrtf->ref) == 0) { al_free(Hrtf->handle); Hrtf->handle = NULL; TRACE("Unloaded unused HRTF %s\n", Hrtf->filename); } Hrtf = Hrtf->next; } ATOMIC_FLAG_CLEAR(&LoadedHrtfLock, almemory_order_seq_cst); } } void FreeHrtfs(void) { struct HrtfEntry *Hrtf = LoadedHrtfs; LoadedHrtfs = NULL; while(Hrtf != NULL) { struct HrtfEntry *next = Hrtf->next; al_free(Hrtf->handle); al_free(Hrtf); Hrtf = next; } }