/** * OpenAL cross platform audio library * Copyright (C) 2011 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alSource.h" #include "alu.h" #include "hrtf.h" #include "compat.h" /* Current data set limits defined by the makehrtf utility. */ #define MIN_IR_SIZE (8) #define MAX_IR_SIZE (128) #define MOD_IR_SIZE (8) #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (128) struct Hrtf { ALuint sampleRate; ALuint irSize; ALubyte evCount; const ALubyte *azCount; const ALushort *evOffset; const ALshort *coeffs; const ALubyte *delays; const char *filename; struct Hrtf *next; }; static const ALchar magicMarker00[8] = "MinPHR00"; static const ALchar magicMarker01[8] = "MinPHR01"; /* First value for pass-through coefficients (remaining are 0), used for omni- * directional sounds. */ static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/; static struct Hrtf *LoadedHrtfs = NULL; /* Calculate the elevation indices given the polar elevation in radians. * This will return two indices between 0 and (evcount - 1) and an * interpolation factor between 0.0 and 1.0. */ static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu) { ev = (F_PI_2 + ev) * (evcount-1) / F_PI; evidx[0] = fastf2u(ev); evidx[1] = minu(evidx[0] + 1, evcount-1); *evmu = ev - evidx[0]; } /* Calculate the azimuth indices given the polar azimuth in radians. This * will return two indices between 0 and (azcount - 1) and an interpolation * factor between 0.0 and 1.0. */ static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu) { az = (F_TAU + az) * azcount / F_TAU; azidx[0] = fastf2u(az) % azcount; azidx[1] = (azidx[0] + 1) % azcount; *azmu = az - floorf(az); } /* Calculates static HRIR coefficients and delays for the given polar * elevation and azimuth in radians. Linear interpolation is used to * increase the apparent resolution of the HRIR data set. The coefficients * are also normalized and attenuated by the specified gain. */ void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays) { ALuint evidx[2], lidx[4], ridx[4]; ALfloat mu[3], blend[4]; ALuint i; /* Claculate elevation indices and interpolation factor. */ CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]); for(i = 0;i < 2;i++) { ALuint azcount = Hrtf->azCount[evidx[i]]; ALuint evoffset = Hrtf->evOffset[evidx[i]]; ALuint azidx[2]; /* Calculate azimuth indices and interpolation factor for this elevation. */ CalcAzIndices(azcount, azimuth, azidx, &mu[i]); /* Calculate a set of linear HRIR indices for left and right channels. */ lidx[i*2 + 0] = evoffset + azidx[0]; lidx[i*2 + 1] = evoffset + azidx[1]; ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount); ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount); } /* Calculate 4 blending weights for 2D bilinear interpolation. */ blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]); blend[1] = ( mu[0]) * (1.0f-mu[2]); blend[2] = (1.0f-mu[1]) * ( mu[2]); blend[3] = ( mu[1]) * ( mu[2]); /* Calculate the HRIR delays using linear interpolation. */ delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] + Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) * dirfact + 0.5f) << HRTFDELAY_BITS; delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] + Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) * dirfact + 0.5f) << HRTFDELAY_BITS; /* Calculate the sample offsets for the HRIR indices. */ lidx[0] *= Hrtf->irSize; lidx[1] *= Hrtf->irSize; lidx[2] *= Hrtf->irSize; lidx[3] *= Hrtf->irSize; ridx[0] *= Hrtf->irSize; ridx[1] *= Hrtf->irSize; ridx[2] *= Hrtf->irSize; ridx[3] *= Hrtf->irSize; /* Calculate the normalized and attenuated HRIR coefficients using linear * interpolation when there is enough gain to warrant it. Zero the * coefficients if gain is too low. */ if(gain > 0.0001f) { ALfloat c; i = 0; c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); for(i = 1;i < Hrtf->irSize;i++) { c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); } } else { for(i = 0;i < Hrtf->irSize;i++) { coeffs[i][0] = 0.0f; coeffs[i][1] = 0.0f; } } } static struct Hrtf *LoadHrtf00(FILE *f, const_al_string filename) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALushort irSize = 0; ALubyte evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; ALubyte *delays = NULL; ALuint i, j; rate = fgetc(f); rate |= fgetc(f)<<8; rate |= fgetc(f)<<16; rate |= fgetc(f)<<24; irCount = fgetc(f); irCount |= fgetc(f)<<8; irSize = fgetc(f); irSize |= fgetc(f)<<8; evCount = fgetc(f); if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { evOffset[0] = fgetc(f); evOffset[0] |= fgetc(f)<<8; for(i = 1;i < evCount;i++) { evOffset[i] = fgetc(f); evOffset[i] |= fgetc(f)<<8; if(evOffset[i] <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]); failed = AL_TRUE; } azCount[i-1] = evOffset[i] - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(irCount <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n", i-1, evOffset[i-1], irCount); failed = AL_TRUE; } azCount[i-1] = irCount - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(!failed) { coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { ALshort coeff; coeff = fgetc(f); coeff |= fgetc(f)<<8; coeffs[i+j] = coeff; } } for(i = 0;i < irCount;i++) { delays[i] = fgetc(f); if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } if(feof(f)) { ERR("Premature end of data\n"); failed = AL_TRUE; } } if(!failed) { size_t total = sizeof(struct Hrtf); total += sizeof(azCount[0])*evCount; total += sizeof(evOffset[0])*evCount; total += sizeof(coeffs[0])*irSize*irCount; total += sizeof(delays[0])*irCount; total += al_string_length(filename)+1; Hrtf = malloc(total); if(Hrtf == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; Hrtf->azCount = ((ALubyte*)(Hrtf+1)); Hrtf->evOffset = ((ALushort*)(Hrtf->azCount + evCount)); Hrtf->coeffs = ((ALshort*)(Hrtf->evOffset + evCount)); Hrtf->delays = ((ALubyte*)(Hrtf->coeffs + irSize*irCount)); Hrtf->filename = ((char*)(Hrtf->delays + irCount)); Hrtf->next = NULL; memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount); memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount); memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount); memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount); memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1); } free(azCount); free(evOffset); free(coeffs); free(delays); return Hrtf; } static struct Hrtf *LoadHrtf01(FILE *f, const_al_string filename) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALubyte irSize = 0, evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; ALubyte *delays = NULL; ALuint i, j; rate = fgetc(f); rate |= fgetc(f)<<8; rate |= fgetc(f)<<16; rate |= fgetc(f)<<24; irSize = fgetc(f); evCount = fgetc(f); if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { for(i = 0;i < evCount;i++) { azCount[i] = fgetc(f); if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } } if(!failed) { evOffset[0] = 0; irCount = azCount[0]; for(i = 1;i < evCount;i++) { evOffset[i] = evOffset[i-1] + azCount[i-1]; irCount += azCount[i]; } coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { ALshort coeff; coeff = fgetc(f); coeff |= fgetc(f)<<8; coeffs[i+j] = coeff; } } for(i = 0;i < irCount;i++) { delays[i] = fgetc(f); if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } if(feof(f)) { ERR("Premature end of data\n"); failed = AL_TRUE; } } if(!failed) { size_t total = sizeof(struct Hrtf); total += sizeof(azCount[0])*evCount; total += sizeof(evOffset[0])*evCount; total += sizeof(coeffs[0])*irSize*irCount; total += sizeof(delays[0])*irCount; total += al_string_length(filename)+1; Hrtf = malloc(total); if(Hrtf == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; Hrtf->azCount = ((ALubyte*)(Hrtf+1)); Hrtf->evOffset = ((ALushort*)(Hrtf->azCount + evCount)); Hrtf->coeffs = ((ALshort*)(Hrtf->evOffset + evCount)); Hrtf->delays = ((ALubyte*)(Hrtf->coeffs + irSize*irCount)); Hrtf->filename = ((char*)(Hrtf->delays + irCount)); Hrtf->next = NULL; memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount); memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount); memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount); memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount); memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1); } free(azCount); free(evOffset); free(coeffs); free(delays); return Hrtf; } static void AddFileEntry(vector_HrtfEntry *list, al_string *filename) { HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL }; HrtfEntry *iter; const char *name; int i; name = strrchr(al_string_get_cstr(*filename), '/'); if(!name) name = strrchr(al_string_get_cstr(*filename), '\\'); if(!name) name = al_string_get_cstr(*filename); else ++name; entry.hrtf = LoadedHrtfs; while(entry.hrtf) { if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0) break; entry.hrtf = entry.hrtf->next; } if(!entry.hrtf) { struct Hrtf *hrtf = NULL; ALchar magic[8]; FILE *f; TRACE("Loading %s...\n", al_string_get_cstr(*filename)); f = al_fopen(al_string_get_cstr(*filename), "rb"); if(f == NULL) { ERR("Could not open %s\n", al_string_get_cstr(*filename)); goto error; } if(fread(magic, 1, sizeof(magic), f) != sizeof(magic)) ERR("Failed to read header from %s\n", al_string_get_cstr(*filename)); else { if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); hrtf = LoadHrtf00(f, *filename); } else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); hrtf = LoadHrtf01(f, *filename); } else ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), magic); } fclose(f); if(!hrtf) { ERR("Failed to load %s\n", al_string_get_cstr(*filename)); goto error; } hrtf->next = LoadedHrtfs; LoadedHrtfs = hrtf; TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); entry.hrtf = hrtf; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ i = 0; do { al_string_copy_cstr(&entry.name, name); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); al_string_append_cstr(&entry.name, str); } ++i; #define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0) VECTOR_FIND_IF(iter, HrtfEntry, *list, MATCH_NAME); #undef MATCH_NAME } while(iter != VECTOR_ITER_END(*list)); TRACE("Adding entry \"%s\" from file \"%s\"\n", al_string_get_cstr(entry.name), al_string_get_cstr(*filename)); VECTOR_PUSH_BACK(*list, entry); error: al_string_deinit(filename); } vector_HrtfEntry EnumerateHrtf(const_al_string devname) { vector_HrtfEntry list = VECTOR_INIT_STATIC(); const char *fnamelist = "%s.mhr"; ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf_tables", &fnamelist); while(fnamelist && *fnamelist) { while(isspace(*fnamelist) || *fnamelist == ',') fnamelist++; if(*fnamelist != '\0') { const char *next, *end; next = strchr(fnamelist, ','); if(!next) end = fnamelist + strlen(fnamelist); else end = next++; while(end != fnamelist && isspace(*(end-1))) --end; if(end != fnamelist) { al_string fname = AL_STRING_INIT_STATIC(); vector_al_string flist; al_string_append_range(&fname, fnamelist, end); flist = SearchDataFiles(al_string_get_cstr(fname), "openal/hrtf"); VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list); VECTOR_DEINIT(flist); al_string_deinit(&fname); } fnamelist = next; } } return list; } void FreeHrtfList(vector_HrtfEntry *list) { #define CLEAR_ENTRY(i) do { \ al_string_deinit(&(i)->name); \ } while(0) VECTOR_FOR_EACH(HrtfEntry, *list, CLEAR_ENTRY); VECTOR_DEINIT(*list); #undef CLEAR_ENTRY } ALuint GetHrtfSampleRate(const struct Hrtf *Hrtf) { return Hrtf->sampleRate; } ALuint GetHrtfIrSize(const struct Hrtf *Hrtf) { return Hrtf->irSize; } void FreeHrtfs(void) { struct Hrtf *Hrtf = LoadedHrtfs; LoadedHrtfs = NULL; while(Hrtf != NULL) { struct Hrtf *next = Hrtf->next; free(Hrtf); Hrtf = next; } }