/** * OpenAL cross platform audio library * Copyright (C) 2011 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alSource.h" #include "alu.h" #include "hrtf.h" #include "compat.h" /* Current data set limits defined by the makehrtf utility. */ #define MIN_IR_SIZE (8) #define MAX_IR_SIZE (128) #define MOD_IR_SIZE (8) #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (128) struct Hrtf { ALuint sampleRate; ALuint irSize; ALubyte evCount; const ALubyte *azCount; const ALushort *evOffset; const ALshort *coeffs; const ALubyte *delays; al_string filename; struct Hrtf *next; }; static const ALchar magicMarker00[8] = "MinPHR00"; static const ALchar magicMarker01[8] = "MinPHR01"; /* First value for pass-through coefficients (remaining are 0), used for omni- * directional sounds. */ static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/; static struct Hrtf *LoadedHrtfs = NULL; /* Calculate the elevation indices given the polar elevation in radians. * This will return two indices between 0 and (evcount - 1) and an * interpolation factor between 0.0 and 1.0. */ static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu) { ev = (F_PI_2 + ev) * (evcount-1) / F_PI; evidx[0] = fastf2u(ev); evidx[1] = minu(evidx[0] + 1, evcount-1); *evmu = ev - evidx[0]; } /* Calculate the azimuth indices given the polar azimuth in radians. This * will return two indices between 0 and (azcount - 1) and an interpolation * factor between 0.0 and 1.0. */ static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu) { az = (F_TAU + az) * azcount / F_TAU; azidx[0] = fastf2u(az) % azcount; azidx[1] = (azidx[0] + 1) % azcount; *azmu = az - floorf(az); } /* Calculates static HRIR coefficients and delays for the given polar * elevation and azimuth in radians. Linear interpolation is used to * increase the apparent resolution of the HRIR data set. The coefficients * are also normalized and attenuated by the specified gain. */ void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays) { ALuint evidx[2], lidx[4], ridx[4]; ALfloat mu[3], blend[4]; ALuint i; /* Claculate elevation indices and interpolation factor. */ CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]); for(i = 0;i < 2;i++) { ALuint azcount = Hrtf->azCount[evidx[i]]; ALuint evoffset = Hrtf->evOffset[evidx[i]]; ALuint azidx[2]; /* Calculate azimuth indices and interpolation factor for this elevation. */ CalcAzIndices(azcount, azimuth, azidx, &mu[i]); /* Calculate a set of linear HRIR indices for left and right channels. */ lidx[i*2 + 0] = evoffset + azidx[0]; lidx[i*2 + 1] = evoffset + azidx[1]; ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount); ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount); } /* Calculate 4 blending weights for 2D bilinear interpolation. */ blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]); blend[1] = ( mu[0]) * (1.0f-mu[2]); blend[2] = (1.0f-mu[1]) * ( mu[2]); blend[3] = ( mu[1]) * ( mu[2]); /* Calculate the HRIR delays using linear interpolation. */ delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] + Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) * dirfact + 0.5f) << HRTFDELAY_BITS; delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] + Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) * dirfact + 0.5f) << HRTFDELAY_BITS; /* Calculate the sample offsets for the HRIR indices. */ lidx[0] *= Hrtf->irSize; lidx[1] *= Hrtf->irSize; lidx[2] *= Hrtf->irSize; lidx[3] *= Hrtf->irSize; ridx[0] *= Hrtf->irSize; ridx[1] *= Hrtf->irSize; ridx[2] *= Hrtf->irSize; ridx[3] *= Hrtf->irSize; /* Calculate the normalized and attenuated HRIR coefficients using linear * interpolation when there is enough gain to warrant it. Zero the * coefficients if gain is too low. */ if(gain > 0.0001f) { ALfloat c; i = 0; c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); for(i = 1;i < Hrtf->irSize;i++) { c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); } } else { for(i = 0;i < Hrtf->irSize;i++) { coeffs[i][0] = 0.0f; coeffs[i][1] = 0.0f; } } } /* Calculates the moving HRIR target coefficients, target delays, and * stepping values for the given polar elevation and azimuth in radians. * Linear interpolation is used to increase the apparent resolution of the * HRIR data set. The coefficients are also normalized and attenuated by the * specified gain. Stepping resolution and count is determined using the * given delta factor between 0.0 and 1.0. */ ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep) { ALuint evidx[2], lidx[4], ridx[4]; ALfloat mu[3], blend[4]; ALfloat left, right; ALfloat steps; ALuint i; /* Claculate elevation indices and interpolation factor. */ CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]); for(i = 0;i < 2;i++) { ALuint azcount = Hrtf->azCount[evidx[i]]; ALuint evoffset = Hrtf->evOffset[evidx[i]]; ALuint azidx[2]; /* Calculate azimuth indices and interpolation factor for this elevation. */ CalcAzIndices(azcount, azimuth, azidx, &mu[i]); /* Calculate a set of linear HRIR indices for left and right channels. */ lidx[i*2 + 0] = evoffset + azidx[0]; lidx[i*2 + 1] = evoffset + azidx[1]; ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount); ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount); } // Calculate the stepping parameters. steps = maxf(floorf(delta*Hrtf->sampleRate + 0.5f), 1.0f); delta = 1.0f / steps; /* Calculate 4 blending weights for 2D bilinear interpolation. */ blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]); blend[1] = ( mu[0]) * (1.0f-mu[2]); blend[2] = (1.0f-mu[1]) * ( mu[2]); blend[3] = ( mu[1]) * ( mu[2]); /* Calculate the HRIR delays using linear interpolation. Then calculate * the delay stepping values using the target and previous running * delays. */ left = (ALfloat)(delays[0] - (delayStep[0] * counter)); right = (ALfloat)(delays[1] - (delayStep[1] * counter)); delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] + Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) * dirfact + 0.5f) << HRTFDELAY_BITS; delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] + Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) * dirfact + 0.5f) << HRTFDELAY_BITS; delayStep[0] = fastf2i(delta * (delays[0] - left)); delayStep[1] = fastf2i(delta * (delays[1] - right)); /* Calculate the sample offsets for the HRIR indices. */ lidx[0] *= Hrtf->irSize; lidx[1] *= Hrtf->irSize; lidx[2] *= Hrtf->irSize; lidx[3] *= Hrtf->irSize; ridx[0] *= Hrtf->irSize; ridx[1] *= Hrtf->irSize; ridx[2] *= Hrtf->irSize; ridx[3] *= Hrtf->irSize; /* Calculate the normalized and attenuated target HRIR coefficients using * linear interpolation when there is enough gain to warrant it. Zero * the target coefficients if gain is too low. Then calculate the * coefficient stepping values using the target and previous running * coefficients. */ if(gain > 0.0001f) { ALfloat c; i = 0; left = coeffs[i][0] - (coeffStep[i][0] * counter); right = coeffs[i][1] - (coeffStep[i][1] * counter); c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); coeffStep[i][0] = delta * (coeffs[i][0] - left); coeffStep[i][1] = delta * (coeffs[i][1] - right); for(i = 1;i < Hrtf->irSize;i++) { left = coeffs[i][0] - (coeffStep[i][0] * counter); right = coeffs[i][1] - (coeffStep[i][1] * counter); c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); coeffStep[i][0] = delta * (coeffs[i][0] - left); coeffStep[i][1] = delta * (coeffs[i][1] - right); } } else { for(i = 0;i < Hrtf->irSize;i++) { left = coeffs[i][0] - (coeffStep[i][0] * counter); right = coeffs[i][1] - (coeffStep[i][1] * counter); coeffs[i][0] = 0.0f; coeffs[i][1] = 0.0f; coeffStep[i][0] = delta * -left; coeffStep[i][1] = delta * -right; } } /* The stepping count is the number of samples necessary for the HRIR to * complete its transition. The mixer will only apply stepping for this * many samples. */ return fastf2u(steps); } /* Calculates HRTF coefficients for B-Format channels (only up to first-order). * Note that these will decode a B-Format output mix, which uses FuMa ordering * and scaling, not N3D! */ void GetBFormatHrtfCoeffs(const struct Hrtf *Hrtf, const ALuint num_chans, ALfloat (**coeffs_list)[2], ALuint **delay_list) { ALuint elev_idx, azi_idx; ALfloat scale; ALuint i, c; assert(num_chans <= 4); for(c = 0;c < num_chans;c++) { ALfloat (*coeffs)[2] = coeffs_list[c]; ALuint *delay = delay_list[c]; for(i = 0;i < Hrtf->irSize;i++) { coeffs[i][0] = 0.0f; coeffs[i][1] = 0.0f; } delay[0] = 0; delay[1] = 0; } /* NOTE: HRTF coefficients are generated by combining all the HRIRs in the * dataset, with each entry scaled according to how much it contributes to * the given B-Format channel based on its direction (including negative * contributions!). */ scale = 0.0f; for(elev_idx = 0;elev_idx < Hrtf->evCount;elev_idx++) { ALfloat elev = (ALfloat)elev_idx/(ALfloat)(Hrtf->evCount-1)*F_PI - F_PI_2; ALuint evoffset = Hrtf->evOffset[elev_idx]; ALuint azcount = Hrtf->azCount[elev_idx]; scale += (ALfloat)azcount; for(azi_idx = 0;azi_idx < azcount;azi_idx++) { ALuint lidx, ridx; ALfloat ambi_coeffs[4]; ALfloat az, gain; ALfloat x, y, z; lidx = evoffset + azi_idx; ridx = evoffset + ((azcount-azi_idx) % azcount); az = (ALfloat)azi_idx / (ALfloat)azcount * F_TAU; if(az > F_PI) az -= F_TAU; x = cosf(-az) * cosf(elev); y = sinf(-az) * cosf(elev); z = sinf(elev); ambi_coeffs[0] = 1.4142f; ambi_coeffs[1] = x; ambi_coeffs[2] = y; ambi_coeffs[3] = z; for(c = 0;c < num_chans;c++) { ALfloat (*coeffs)[2] = coeffs_list[c]; ALuint *delay = delay_list[c]; /* NOTE: Always include the total delay average since the * channels need to have matching delays. */ delay[0] += Hrtf->delays[lidx]; delay[1] += Hrtf->delays[ridx]; gain = ambi_coeffs[c]; if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(i = 0;i < Hrtf->irSize;i++) { coeffs[i][0] += Hrtf->coeffs[lidx*Hrtf->irSize + i]*(1.0f/32767.0f) * gain; coeffs[i][1] += Hrtf->coeffs[ridx*Hrtf->irSize + i]*(1.0f/32767.0f) * gain; } } } } scale = 1.0f/scale; for(c = 0;c < num_chans;c++) { ALfloat (*coeffs)[2] = coeffs_list[c]; ALuint *delay = delay_list[c]; for(i = 0;i < Hrtf->irSize;i++) { coeffs[i][0] *= scale; coeffs[i][1] *= scale; } delay[0] = minu((ALuint)((ALfloat)delay[0] * scale), HRTF_HISTORY_LENGTH-1); delay[0] <<= HRTFDELAY_BITS; delay[1] = minu((ALuint)((ALfloat)delay[1] * scale), HRTF_HISTORY_LENGTH-1); delay[1] <<= HRTFDELAY_BITS; } } static struct Hrtf *LoadHrtf00(FILE *f, ALuint deviceRate) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALushort irSize = 0; ALubyte evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; ALubyte *delays = NULL; ALuint i, j; rate = fgetc(f); rate |= fgetc(f)<<8; rate |= fgetc(f)<<16; rate |= fgetc(f)<<24; irCount = fgetc(f); irCount |= fgetc(f)<<8; irSize = fgetc(f); irSize |= fgetc(f)<<8; evCount = fgetc(f); if(deviceRate && rate != deviceRate) { ERR("HRIR rate does not match device rate: rate=%d (%d)\n", rate, deviceRate); failed = AL_TRUE; } if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { evOffset[0] = fgetc(f); evOffset[0] |= fgetc(f)<<8; for(i = 1;i < evCount;i++) { evOffset[i] = fgetc(f); evOffset[i] |= fgetc(f)<<8; if(evOffset[i] <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]); failed = AL_TRUE; } azCount[i-1] = evOffset[i] - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(irCount <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n", i-1, evOffset[i-1], irCount); failed = AL_TRUE; } azCount[i-1] = irCount - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(!failed) { coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { ALshort coeff; coeff = fgetc(f); coeff |= fgetc(f)<<8; coeffs[i+j] = coeff; } } for(i = 0;i < irCount;i++) { delays[i] = fgetc(f); if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } if(feof(f)) { ERR("Premature end of data\n"); failed = AL_TRUE; } } if(!failed) { Hrtf = malloc(sizeof(struct Hrtf)); if(Hrtf == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; Hrtf->azCount = azCount; Hrtf->evOffset = evOffset; Hrtf->coeffs = coeffs; Hrtf->delays = delays; AL_STRING_INIT(Hrtf->filename); Hrtf->next = NULL; return Hrtf; } free(azCount); free(evOffset); free(coeffs); free(delays); return NULL; } static struct Hrtf *LoadHrtf01(FILE *f, ALuint deviceRate) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALubyte irSize = 0, evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; ALubyte *delays = NULL; ALuint i, j; rate = fgetc(f); rate |= fgetc(f)<<8; rate |= fgetc(f)<<16; rate |= fgetc(f)<<24; irSize = fgetc(f); evCount = fgetc(f); if(deviceRate && rate != deviceRate) { ERR("HRIR rate does not match device rate: rate=%d (%d)\n", rate, deviceRate); failed = AL_TRUE; } if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { for(i = 0;i < evCount;i++) { azCount[i] = fgetc(f); if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } } if(!failed) { evOffset[0] = 0; irCount = azCount[0]; for(i = 1;i < evCount;i++) { evOffset[i] = evOffset[i-1] + azCount[i-1]; irCount += azCount[i]; } coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); delays = malloc(sizeof(delays[0])*irCount); if(coeffs == NULL || delays == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { ALshort coeff; coeff = fgetc(f); coeff |= fgetc(f)<<8; coeffs[i+j] = coeff; } } for(i = 0;i < irCount;i++) { delays[i] = fgetc(f); if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } if(feof(f)) { ERR("Premature end of data\n"); failed = AL_TRUE; } } if(!failed) { Hrtf = malloc(sizeof(struct Hrtf)); if(Hrtf == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; Hrtf->azCount = azCount; Hrtf->evOffset = evOffset; Hrtf->coeffs = coeffs; Hrtf->delays = delays; AL_STRING_INIT(Hrtf->filename); Hrtf->next = NULL; return Hrtf; } free(azCount); free(evOffset); free(coeffs); free(delays); return NULL; } static void AddFileEntry(vector_HrtfEntry *list, al_string *filename) { HrtfEntry entry = { AL_STRING_INIT_STATIC(), *filename, NULL }; HrtfEntry *iter; const char *name; int i; name = strrchr(al_string_get_cstr(entry.filename), '/'); if(!name) name = strrchr(al_string_get_cstr(entry.filename), '\\'); if(!name) name = al_string_get_cstr(entry.filename); else ++name; entry.hrtf = LoadedHrtfs; while(entry.hrtf) { if(al_string_cmp(entry.filename, entry.hrtf->filename) == 0) break; entry.hrtf = entry.hrtf->next; } if(!entry.hrtf) { struct Hrtf *hrtf = NULL; ALchar magic[8]; FILE *f; TRACE("Loading %s...\n", al_string_get_cstr(entry.filename)); f = al_fopen(al_string_get_cstr(entry.filename), "rb"); if(f == NULL) { ERR("Could not open %s\n", al_string_get_cstr(entry.filename)); goto error; } if(fread(magic, 1, sizeof(magic), f) != sizeof(magic)) ERR("Failed to read header from %s\n", al_string_get_cstr(entry.filename)); else { if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); hrtf = LoadHrtf00(f, 0); } else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); hrtf = LoadHrtf01(f, 0); } else ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(entry.filename), magic); } fclose(f); if(!hrtf) { ERR("Failed to load %s\n", al_string_get_cstr(entry.filename)); goto error; } al_string_copy(&hrtf->filename, entry.filename); hrtf->next = LoadedHrtfs; LoadedHrtfs = hrtf; TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); entry.hrtf = hrtf; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ i = 0; do { al_string_copy_cstr(&entry.name, name); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); al_string_append_cstr(&entry.name, str); } ++i; #define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0) VECTOR_FIND_IF(iter, HrtfEntry, *list, MATCH_NAME); #undef MATCH_NAME } while(iter != VECTOR_ITER_END(*list)); TRACE("Adding entry \"%s\" from file \"%s\"\n", al_string_get_cstr(entry.name), al_string_get_cstr(entry.filename)); VECTOR_PUSH_BACK(*list, entry); return; error: al_string_deinit(&entry.filename); } vector_HrtfEntry EnumerateHrtf(const_al_string devname) { vector_HrtfEntry list = VECTOR_INIT_STATIC(); const char *fnamelist = "default-%r.mhr"; ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf_tables", &fnamelist); while(fnamelist && *fnamelist) { while(isspace(*fnamelist) || *fnamelist == ',') fnamelist++; if(*fnamelist != '\0') { const char *next, *end; next = strchr(fnamelist, ','); if(!next) end = fnamelist + strlen(fnamelist); else end = next++; while(end != fnamelist && isspace(*(end-1))) --end; if(end != fnamelist) { al_string fname = AL_STRING_INIT_STATIC(); vector_al_string flist; al_string_append_range(&fname, fnamelist, end); flist = SearchDataFiles(al_string_get_cstr(fname), "openal/hrtf"); VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list); VECTOR_DEINIT(flist); al_string_deinit(&fname); } fnamelist = next; } } return list; } void FreeHrtfList(vector_HrtfEntry *list) { #define CLEAR_ENTRY(i) do { \ al_string_deinit(&(i)->name); \ al_string_deinit(&(i)->filename); \ } while(0) VECTOR_FOR_EACH(HrtfEntry, *list, CLEAR_ENTRY); VECTOR_DEINIT(*list); #undef CLEAR_ENTRY } static struct Hrtf *LoadHrtf(const_al_string devname, ALuint deviceRate) { const char *fnamelist = "default-%r.mhr"; ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf_tables", &fnamelist); while(*fnamelist != '\0') { struct Hrtf *Hrtf = NULL; char fname[PATH_MAX]; const char *next; ALchar magic[8]; ALuint i; FILE *f; i = 0; while(isspace(*fnamelist) || *fnamelist == ',') fnamelist++; next = fnamelist; while(*(fnamelist=next) != '\0' && *fnamelist != ',') { next = strpbrk(fnamelist, "%,"); while(fnamelist != next && *fnamelist && i < sizeof(fname)) fname[i++] = *(fnamelist++); if(!next || *next == ',') break; /* *next == '%' */ next++; if(*next == 'r') { int wrote = snprintf(&fname[i], sizeof(fname)-i, "%u", deviceRate); i += minu(wrote, sizeof(fname)-i); next++; } else if(*next == '%') { if(i < sizeof(fname)) fname[i++] = '%'; next++; } else ERR("Invalid marker '%%%c'\n", *next); } i = minu(i, sizeof(fname)-1); fname[i] = '\0'; while(i > 0 && isspace(fname[i-1])) i--; fname[i] = '\0'; if(fname[0] == '\0') continue; TRACE("Loading %s...\n", fname); f = OpenDataFile(fname, "openal/hrtf"); if(f == NULL) { ERR("Could not open %s\n", fname); continue; } if(fread(magic, 1, sizeof(magic), f) != sizeof(magic)) ERR("Failed to read header from %s\n", fname); else { if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); Hrtf = LoadHrtf00(f, deviceRate); } else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); Hrtf = LoadHrtf01(f, deviceRate); } else ERR("Invalid header in %s: \"%.8s\"\n", fname, magic); } fclose(f); f = NULL; if(Hrtf) { Hrtf->next = LoadedHrtfs; LoadedHrtfs = Hrtf; TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), Hrtf->sampleRate); return Hrtf; } ERR("Failed to load %s\n", fname); } return NULL; } const struct Hrtf *GetHrtf(const_al_string devname, enum DevFmtChannels chans, ALCuint srate) { if(chans == DevFmtStereo) { struct Hrtf *Hrtf = LoadedHrtfs; while(Hrtf != NULL) { if(srate == Hrtf->sampleRate) return Hrtf; Hrtf = Hrtf->next; } Hrtf = LoadHrtf(devname, srate); if(Hrtf != NULL) return Hrtf; } ERR("Incompatible format: %s %uhz\n", DevFmtChannelsString(chans), srate); return NULL; } ALCboolean FindHrtfFormat(const_al_string devname, enum DevFmtChannels *chans, ALCuint *srate) { const struct Hrtf *hrtf = LoadedHrtfs; while(hrtf != NULL) { if(*srate == hrtf->sampleRate) break; hrtf = hrtf->next; } if(hrtf == NULL) { hrtf = LoadHrtf(devname, *srate); if(hrtf == NULL) return ALC_FALSE; } *chans = DevFmtStereo; *srate = hrtf->sampleRate; return ALC_TRUE; } void FreeHrtfs(void) { struct Hrtf *Hrtf = NULL; while((Hrtf=LoadedHrtfs) != NULL) { LoadedHrtfs = Hrtf->next; free((void*)Hrtf->azCount); free((void*)Hrtf->evOffset); free((void*)Hrtf->coeffs); free((void*)Hrtf->delays); al_string_deinit(&Hrtf->filename); free(Hrtf); } } ALuint GetHrtfIrSize(const struct Hrtf *Hrtf) { return Hrtf->irSize; }