/** * OpenAL cross platform audio library * Copyright (C) 2011 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alSource.h" #include "alu.h" #include "bformatdec.h" #include "hrtf.h" #include "compat.h" #include "almalloc.h" /* Current data set limits defined by the makehrtf utility. */ #define MIN_IR_SIZE (8) #define MAX_IR_SIZE (128) #define MOD_IR_SIZE (8) #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (128) struct HrtfEntry { struct HrtfEntry *next; struct Hrtf *handle; char filename[]; }; static const ALchar magicMarker00[8] = "MinPHR00"; static const ALchar magicMarker01[8] = "MinPHR01"; /* First value for pass-through coefficients (remaining are 0), used for omni- * directional sounds. */ static const ALfloat PassthruCoeff = 0.707106781187f/*sqrt(0.5)*/; static struct HrtfEntry *LoadedHrtfs = NULL; /* Calculate the elevation index given the polar elevation in radians. This * will return an index between 0 and (evcount - 1). Assumes the FPU is in * round-to-zero mode. */ static ALsizei CalcEvIndex(ALsizei evcount, ALfloat ev) { ev = (F_PI_2 + ev) * (evcount-1) / F_PI; return mini(fastf2i(ev + 0.5f), evcount-1); } /* Calculate the azimuth index given the polar azimuth in radians. This will * return an index between 0 and (azcount - 1). Assumes the FPU is in round-to- * zero mode. */ static ALsizei CalcAzIndex(ALsizei azcount, ALfloat az) { az = (F_TAU + az) * azcount / F_TAU; return fastf2i(az + 0.5f) % azcount; } /* Calculates static HRIR coefficients and delays for the given polar elevation * and azimuth in radians. The coefficients are normalized. */ void GetHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread, ALfloat (*coeffs)[2], ALsizei *delays) { ALsizei evidx, azidx, lidx, ridx; ALsizei azcount, evoffset; ALfloat dirfact; ALsizei i; dirfact = 1.0f - (spread / F_TAU); /* Claculate elevation index. */ evidx = CalcEvIndex(Hrtf->evCount, elevation); azcount = Hrtf->azCount[evidx]; evoffset = Hrtf->evOffset[evidx]; /* Calculate azimuth index. */ azidx = CalcAzIndex(Hrtf->azCount[evidx], azimuth); /* Calculate the HRIR indices for left and right channels. */ lidx = evoffset + azidx; ridx = evoffset + ((azcount-azidx) % azcount); /* Calculate the HRIR delays. */ delays[0] = fastf2i(Hrtf->delays[lidx]*dirfact + 0.5f); delays[1] = fastf2i(Hrtf->delays[ridx]*dirfact + 0.5f); /* Calculate the sample offsets for the HRIR indices. */ lidx *= Hrtf->irSize; ridx *= Hrtf->irSize; /* Calculate the normalized and attenuated HRIR coefficients. */ i = 0; coeffs[i][0] = lerp(PassthruCoeff, Hrtf->coeffs[lidx+i], dirfact); coeffs[i][1] = lerp(PassthruCoeff, Hrtf->coeffs[ridx+i], dirfact); for(i = 1;i < Hrtf->irSize;i++) { coeffs[i][0] = Hrtf->coeffs[lidx+i] * dirfact; coeffs[i][1] = Hrtf->coeffs[ridx+i] * dirfact; } } ALsizei BuildBFormatHrtf(const struct Hrtf *Hrtf, DirectHrtfState *state, ALsizei NumChannels, const ALfloat (*restrict AmbiPoints)[2], const ALfloat (*restrict AmbiMatrix)[2][MAX_AMBI_COEFFS], ALsizei AmbiCount) { /* Set this to 2 for dual-band HRTF processing. May require a higher quality * band-splitter, or better calculation of the new IR length to deal with the * tail generated by the filter. */ #define NUM_BANDS 2 BandSplitter splitter; ALsizei lidx[HRTF_AMBI_MAX_CHANNELS], ridx[HRTF_AMBI_MAX_CHANNELS]; ALsizei min_delay = HRTF_HISTORY_LENGTH; ALfloat temps[3][HRIR_LENGTH]; ALsizei max_length = 0; ALsizei i, c, b; for(c = 0;c < AmbiCount;c++) { ALuint evidx, azidx; ALuint evoffset; ALuint azcount; /* Calculate elevation index. */ evidx = (ALsizei)floorf((F_PI_2 + AmbiPoints[c][0]) * (Hrtf->evCount-1)/F_PI + 0.5f); evidx = mini(evidx, Hrtf->evCount-1); azcount = Hrtf->azCount[evidx]; evoffset = Hrtf->evOffset[evidx]; /* Calculate azimuth index for this elevation. */ azidx = (ALsizei)floorf((F_TAU+AmbiPoints[c][1]) * azcount/F_TAU + 0.5f) % azcount; /* Calculate indices for left and right channels. */ lidx[c] = evoffset + azidx; ridx[c] = evoffset + ((azcount-azidx) % azcount); min_delay = mini(min_delay, mini(Hrtf->delays[lidx[c]], Hrtf->delays[ridx[c]])); } memset(temps, 0, sizeof(temps)); bandsplit_init(&splitter, 400.0f / (ALfloat)Hrtf->sampleRate); for(c = 0;c < AmbiCount;c++) { const ALfloat *fir; ALsizei delay; /* Add to the left output coefficients with the specified delay. */ fir = &Hrtf->coeffs[lidx[c] * Hrtf->irSize]; delay = Hrtf->delays[lidx[c]] - min_delay; if(NUM_BANDS == 1) { for(i = 0;i < NumChannels;++i) { ALsizei j = delay, k = 0; while(j < HRIR_LENGTH && k < Hrtf->irSize) state->Chan[i].Coeffs[j++][0] += fir[k++] * AmbiMatrix[c][0][i]; } } else { /* Band-split left HRIR into low and high frequency responses. */ bandsplit_clear(&splitter); for(i = 0;i < Hrtf->irSize;i++) temps[2][i] = fir[i]; bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH); for(i = 0;i < NumChannels;++i) { for(b = 0;b < NUM_BANDS;b++) { ALsizei j = delay, k = 0; while(j < HRIR_LENGTH) state->Chan[i].Coeffs[j++][0] += temps[b][k++] * AmbiMatrix[c][b][i]; } } } max_length = maxi(max_length, mini(delay + Hrtf->irSize, HRIR_LENGTH)); /* Add to the right output coefficients with the specified delay. */ fir = &Hrtf->coeffs[ridx[c] * Hrtf->irSize]; delay = Hrtf->delays[ridx[c]] - min_delay; if(NUM_BANDS == 1) { for(i = 0;i < NumChannels;++i) { ALsizei j = delay, k = 0; while(j < HRIR_LENGTH && k < Hrtf->irSize) state->Chan[i].Coeffs[j++][1] += fir[k++] * AmbiMatrix[c][0][i]; } } else { /* Band-split right HRIR into low and high frequency responses. */ bandsplit_clear(&splitter); for(i = 0;i < Hrtf->irSize;i++) temps[2][i] = fir[i]; bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH); for(i = 0;i < NumChannels;++i) { for(b = 0;b < NUM_BANDS;b++) { ALsizei j = delay, k = 0; while(j < HRIR_LENGTH) state->Chan[i].Coeffs[j++][1] += temps[b][k++] * AmbiMatrix[c][b][i]; } } } max_length = maxi(max_length, mini(delay + Hrtf->irSize, HRIR_LENGTH)); } TRACE("Skipped min delay: %d, new combined length: %d\n", min_delay, max_length); return max_length; #undef NUM_BANDS } static struct Hrtf *CreateHrtfStore(ALuint rate, ALsizei irSize, ALsizei evCount, ALsizei irCount, const ALubyte *azCount, const ALushort *evOffset, const ALshort *coeffs, const ALubyte *delays, const char *filename) { struct Hrtf *Hrtf; size_t total; total = sizeof(struct Hrtf); total += sizeof(Hrtf->azCount[0])*evCount; total = RoundUp(total, sizeof(ALushort)); /* Align for ushort fields */ total += sizeof(Hrtf->evOffset[0])*evCount; total = RoundUp(total, sizeof(ALfloat)); /* Align for float fields */ total += sizeof(Hrtf->coeffs[0])*irSize*irCount; total += sizeof(Hrtf->delays[0])*irCount; Hrtf = al_calloc(16, total); if(Hrtf == NULL) ERR("Out of memory allocating storage for %s.\n", filename); else { uintptr_t offset = sizeof(struct Hrtf); char *base = (char*)Hrtf; ALushort *_evOffset; ALubyte *_azCount; ALubyte *_delays; ALfloat *_coeffs; ALsizei i; Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; /* Set up pointers to storage following the main HRTF struct. */ _azCount = (ALubyte*)(base + offset); Hrtf->azCount = _azCount; offset += sizeof(_azCount[0])*evCount; offset = RoundUp(offset, sizeof(ALushort)); /* Align for ushort fields */ _evOffset = (ALushort*)(base + offset); Hrtf->evOffset = _evOffset; offset += sizeof(_evOffset[0])*evCount; offset = RoundUp(offset, sizeof(ALfloat)); /* Align for float fields */ _coeffs = (ALfloat*)(base + offset); Hrtf->coeffs = _coeffs; offset += sizeof(_coeffs[0])*irSize*irCount; _delays = (ALubyte*)(base + offset); Hrtf->delays = _delays; offset += sizeof(_delays[0])*irCount; /* Copy input data to storage. */ for(i = 0;i < evCount;i++) _azCount[i] = azCount[i]; for(i = 0;i < evCount;i++) _evOffset[i] = evOffset[i]; for(i = 0;i < irSize*irCount;i++) _coeffs[i] = coeffs[i] / 32768.0f; for(i = 0;i < irCount;i++) _delays[i] = delays[i]; assert(offset == total); } return Hrtf; } static struct Hrtf *LoadHrtf00(const ALubyte *data, size_t datalen, const char *filename) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALushort irSize = 0; ALubyte evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; const ALubyte *delays = NULL; ALuint i, j; if(datalen < 9) { ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", filename, 9, datalen); return NULL; } rate = *(data++); rate |= *(data++)<<8; rate |= *(data++)<<16; rate |= *(data++)<<24; datalen -= 4; irCount = *(data++); irCount |= *(data++)<<8; datalen -= 2; irSize = *(data++); irSize |= *(data++)<<8; datalen -= 2; evCount = *(data++); datalen -= 1; if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; if(datalen < evCount*2) { ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", filename, evCount*2, datalen); return NULL; } azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { evOffset[0] = *(data++); evOffset[0] |= *(data++)<<8; datalen -= 2; for(i = 1;i < evCount;i++) { evOffset[i] = *(data++); evOffset[i] |= *(data++)<<8; datalen -= 2; if(evOffset[i] <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]); failed = AL_TRUE; } azCount[i-1] = evOffset[i] - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(irCount <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n", i-1, evOffset[i-1], irCount); failed = AL_TRUE; } azCount[i-1] = irCount - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(!failed) { coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); if(coeffs == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { size_t reqsize = 2*irSize*irCount + irCount; if(datalen < reqsize) { ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT")\n", filename, reqsize, datalen); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { coeffs[i+j] = *(data++); coeffs[i+j] |= *(data++)<<8; datalen -= 2; } } delays = data; data += irCount; datalen -= irCount; for(i = 0;i < irCount;i++) { if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } } if(!failed) Hrtf = CreateHrtfStore(rate, irSize, evCount, irCount, azCount, evOffset, coeffs, delays, filename); free(azCount); free(evOffset); free(coeffs); return Hrtf; } static struct Hrtf *LoadHrtf01(const ALubyte *data, size_t datalen, const char *filename) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALubyte irSize = 0, evCount = 0; const ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; const ALubyte *delays = NULL; ALuint i, j; if(datalen < 6) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, 6, datalen); return NULL; } rate = *(data++); rate |= *(data++)<<8; rate |= *(data++)<<16; rate |= *(data++)<<24; datalen -= 4; irSize = *(data++); datalen -= 1; evCount = *(data++); datalen -= 1; if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; if(datalen < evCount) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", filename, evCount, datalen); return NULL; } azCount = data; data += evCount; datalen -= evCount; evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { for(i = 0;i < evCount;i++) { if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } } if(!failed) { evOffset[0] = 0; irCount = azCount[0]; for(i = 1;i < evCount;i++) { evOffset[i] = evOffset[i-1] + azCount[i-1]; irCount += azCount[i]; } coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); if(coeffs == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { size_t reqsize = 2*irSize*irCount + irCount; if(datalen < reqsize) { ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n", filename, reqsize, datalen); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { ALshort coeff; coeff = *(data++); coeff |= *(data++)<<8; datalen -= 2; coeffs[i+j] = coeff; } } delays = data; data += irCount; datalen -= irCount; for(i = 0;i < irCount;i++) { if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } } if(!failed) Hrtf = CreateHrtfStore(rate, irSize, evCount, irCount, azCount, evOffset, coeffs, delays, filename); free(evOffset); free(coeffs); return Hrtf; } static void AddFileEntry(vector_EnumeratedHrtf *list, const_al_string filename) { EnumeratedHrtf entry = { AL_STRING_INIT_STATIC(), NULL }; struct HrtfEntry *loaded_entry; const EnumeratedHrtf *iter; const char *name; const char *ext; int i; /* Check if this file has already been loaded globally. */ loaded_entry = LoadedHrtfs; while(loaded_entry) { if(alstr_cmp_cstr(filename, loaded_entry->filename) == 0) { /* Check if this entry has already been added to the list. */ #define MATCH_ENTRY(i) (loaded_entry == (i)->hrtf) VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_ENTRY); if(iter != VECTOR_END(*list)) { TRACE("Skipping duplicate file entry %s\n", alstr_get_cstr(filename)); return; } #undef MATCH_FNAME break; } loaded_entry = loaded_entry->next; } if(!loaded_entry) { TRACE("Got new file \"%s\"\n", alstr_get_cstr(filename)); loaded_entry = al_calloc(DEF_ALIGN, offsetof(struct HrtfEntry, filename[alstr_length(filename)+1]) ); loaded_entry->next = LoadedHrtfs; loaded_entry->handle = NULL; strcpy(loaded_entry->filename, alstr_get_cstr(filename)); LoadedHrtfs = loaded_entry; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ name = strrchr(alstr_get_cstr(filename), '/'); if(!name) name = strrchr(alstr_get_cstr(filename), '\\'); if(!name) name = alstr_get_cstr(filename); else ++name; ext = strrchr(name, '.'); i = 0; do { if(!ext) alstr_copy_cstr(&entry.name, name); else alstr_copy_range(&entry.name, name, ext); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); alstr_append_cstr(&entry.name, str); } ++i; #define MATCH_NAME(i) (alstr_cmp(entry.name, (i)->name) == 0) VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_NAME); #undef MATCH_NAME } while(iter != VECTOR_END(*list)); entry.hrtf = loaded_entry; TRACE("Adding entry \"%s\" from file \"%s\"\n", alstr_get_cstr(entry.name), alstr_get_cstr(filename)); VECTOR_PUSH_BACK(*list, entry); } /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer * for input instead of opening the given filename. */ static void AddBuiltInEntry(vector_EnumeratedHrtf *list, const_al_string filename, size_t residx) { EnumeratedHrtf entry = { AL_STRING_INIT_STATIC(), NULL }; struct HrtfEntry *loaded_entry; struct Hrtf *hrtf = NULL; const EnumeratedHrtf *iter; const char *name; const char *ext; int i; loaded_entry = LoadedHrtfs; while(loaded_entry) { if(alstr_cmp_cstr(filename, loaded_entry->filename) == 0) { #define MATCH_ENTRY(i) (loaded_entry == (i)->hrtf) VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_ENTRY); if(iter != VECTOR_END(*list)) { TRACE("Skipping duplicate file entry %s\n", alstr_get_cstr(filename)); return; } #undef MATCH_FNAME break; } loaded_entry = loaded_entry->next; } if(!loaded_entry) { size_t namelen = alstr_length(filename)+32; TRACE("Got new file \"%s\"\n", alstr_get_cstr(filename)); loaded_entry = al_calloc(DEF_ALIGN, offsetof(struct HrtfEntry, filename[namelen]) ); loaded_entry->next = LoadedHrtfs; loaded_entry->handle = hrtf; snprintf(loaded_entry->filename, namelen, "!"SZFMT"_%s", residx, alstr_get_cstr(filename)); LoadedHrtfs = loaded_entry; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ name = strrchr(alstr_get_cstr(filename), '/'); if(!name) name = strrchr(alstr_get_cstr(filename), '\\'); if(!name) name = alstr_get_cstr(filename); else ++name; ext = strrchr(name, '.'); i = 0; do { if(!ext) alstr_copy_cstr(&entry.name, name); else alstr_copy_range(&entry.name, name, ext); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); alstr_append_cstr(&entry.name, str); } ++i; #define MATCH_NAME(i) (alstr_cmp(entry.name, (i)->name) == 0) VECTOR_FIND_IF(iter, const EnumeratedHrtf, *list, MATCH_NAME); #undef MATCH_NAME } while(iter != VECTOR_END(*list)); entry.hrtf = loaded_entry; TRACE("Adding built-in entry \"%s\"\n", alstr_get_cstr(entry.name)); VECTOR_PUSH_BACK(*list, entry); } #ifndef ALSOFT_EMBED_HRTF_DATA #define IDR_DEFAULT_44100_MHR 1 #define IDR_DEFAULT_48000_MHR 2 static const ALubyte *GetResource(int UNUSED(name), size_t *size) { *size = 0; return NULL; } #else #include "hrtf_res.h" #ifdef _WIN32 static const ALubyte *GetResource(int name, size_t *size) { HMODULE handle; HGLOBAL res; HRSRC rc; GetModuleHandleExW( GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, (LPCWSTR)GetResource, &handle ); rc = FindResourceW(handle, MAKEINTRESOURCEW(name), MAKEINTRESOURCEW(MHRTYPE)); res = LoadResource(handle, rc); *size = SizeofResource(handle, rc); return LockResource(res); } #elif defined(__APPLE__) #include #include #include static const ALubyte *GetResource(int name, size_t *size) { #if defined(__MAC_OS_X_VERSION_MAX_ALLOWED) && (__MAC_OS_X_VERSION_MAX_ALLOWED >= 1070) /* NOTE: OSX 10.7 and up need to call getsectiondata(&_mh_dylib_header, ...). However, that * call requires 10.7. */ if(name == IDR_DEFAULT_44100_MHR) return getsectiondata(&_mh_dylib_header, "binary", "default_44100", size); if(name == IDR_DEFAULT_48000_MHR) return getsectiondata(&_mh_dylib_header, "binary", "default_48000", size); #else if(name == IDR_DEFAULT_44100_MHR) return getsectdata("binary", "default_44100", size); if(name == IDR_DEFAULT_48000_MHR) return getsectdata("binary", "default_48000", size); #endif *size = 0; return NULL; } #else extern const ALubyte _binary_default_44100_mhr_start[] HIDDEN_DECL; extern const ALubyte _binary_default_44100_mhr_end[] HIDDEN_DECL; extern const ALubyte _binary_default_44100_mhr_size[] HIDDEN_DECL; extern const ALubyte _binary_default_48000_mhr_start[] HIDDEN_DECL; extern const ALubyte _binary_default_48000_mhr_end[] HIDDEN_DECL; extern const ALubyte _binary_default_48000_mhr_size[] HIDDEN_DECL; static const ALubyte *GetResource(int name, size_t *size) { if(name == IDR_DEFAULT_44100_MHR) { /* Make sure all symbols are referenced, to ensure the compiler won't * ignore the declarations and lose the visibility attribute used to * hide them (would be nice if ld or objcopy could automatically mark * them as hidden when generating them, but apparently they can't). */ const void *volatile ptr =_binary_default_44100_mhr_size; (void)ptr; *size = _binary_default_44100_mhr_end - _binary_default_44100_mhr_start; return _binary_default_44100_mhr_start; } if(name == IDR_DEFAULT_48000_MHR) { const void *volatile ptr =_binary_default_48000_mhr_size; (void)ptr; *size = _binary_default_48000_mhr_end - _binary_default_48000_mhr_start; return _binary_default_48000_mhr_start; } *size = 0; return NULL; } #endif #endif vector_EnumeratedHrtf EnumerateHrtf(const_al_string devname) { vector_EnumeratedHrtf list = VECTOR_INIT_STATIC(); const char *defaulthrtf = ""; const char *pathlist = ""; bool usedefaults = true; if(ConfigValueStr(alstr_get_cstr(devname), NULL, "hrtf-paths", &pathlist)) { al_string pname = AL_STRING_INIT_STATIC(); while(pathlist && *pathlist) { const char *next, *end; while(isspace(*pathlist) || *pathlist == ',') pathlist++; if(*pathlist == '\0') continue; next = strchr(pathlist, ','); if(next) end = next++; else { end = pathlist + strlen(pathlist); usedefaults = false; } while(end != pathlist && isspace(*(end-1))) --end; if(end != pathlist) { vector_al_string flist; size_t i; alstr_append_range(&pname, pathlist, end); flist = SearchDataFiles(".mhr", alstr_get_cstr(pname)); for(i = 0;i < VECTOR_SIZE(flist);i++) AddFileEntry(&list, VECTOR_ELEM(flist, i)); VECTOR_FOR_EACH(al_string, flist, alstr_reset); VECTOR_DEINIT(flist); } pathlist = next; } alstr_reset(&pname); } else if(ConfigValueExists(alstr_get_cstr(devname), NULL, "hrtf_tables")) ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n"); if(usedefaults) { al_string ename = AL_STRING_INIT_STATIC(); vector_al_string flist; const ALubyte *rdata; size_t rsize, i; flist = SearchDataFiles(".mhr", "openal/hrtf"); for(i = 0;i < VECTOR_SIZE(flist);i++) AddFileEntry(&list, VECTOR_ELEM(flist, i)); VECTOR_FOR_EACH(al_string, flist, alstr_reset); VECTOR_DEINIT(flist); rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize); if(rdata != NULL && rsize > 0) { alstr_copy_cstr(&ename, "Built-In 44100hz"); AddBuiltInEntry(&list, ename, IDR_DEFAULT_44100_MHR); } rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize); if(rdata != NULL && rsize > 0) { alstr_copy_cstr(&ename, "Built-In 48000hz"); AddBuiltInEntry(&list, ename, IDR_DEFAULT_48000_MHR); } alstr_reset(&ename); } if(VECTOR_SIZE(list) > 1 && ConfigValueStr(alstr_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf)) { const EnumeratedHrtf *iter; /* Find the preferred HRTF and move it to the front of the list. */ #define FIND_ENTRY(i) (alstr_cmp_cstr((i)->name, defaulthrtf) == 0) VECTOR_FIND_IF(iter, const EnumeratedHrtf, list, FIND_ENTRY); #undef FIND_ENTRY if(iter == VECTOR_END(list)) WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf); else if(iter != VECTOR_BEGIN(list)) { EnumeratedHrtf entry = *iter; memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0), (iter-VECTOR_BEGIN(list))*sizeof(EnumeratedHrtf)); VECTOR_ELEM(list,0) = entry; } } return list; } void FreeHrtfList(vector_EnumeratedHrtf *list) { #define CLEAR_ENTRY(i) alstr_reset(&(i)->name) VECTOR_FOR_EACH(EnumeratedHrtf, *list, CLEAR_ENTRY); VECTOR_DEINIT(*list); #undef CLEAR_ENTRY } struct Hrtf *GetLoadedHrtf(struct HrtfEntry *entry) { static ATOMIC_FLAG LoadLock = ATOMIC_FLAG_INIT; struct Hrtf *hrtf = NULL; struct FileMapping fmap; const ALubyte *rdata; const char *name; size_t residx; size_t rsize; char ch; while(ATOMIC_FLAG_TEST_AND_SET(&LoadLock, almemory_order_seq_cst)) althrd_yield(); if(entry->handle) { hrtf = entry->handle; goto done; } fmap.ptr = NULL; fmap.len = 0; if(sscanf(entry->filename, "!"SZFMT"%c", &residx, &ch) == 2 && ch == '_') { name = strchr(entry->filename, ch)+1; TRACE("Loading %s...\n", name); rdata = GetResource(residx, &rsize); if(rdata == NULL || rsize == 0) { ERR("Could not get resource "SZFMT", %s\n", residx, name); goto done; } } else { name = entry->filename; TRACE("Loading %s...\n", entry->filename); fmap = MapFileToMem(entry->filename); if(fmap.ptr == NULL) { ERR("Could not open %s\n", entry->filename); goto done; } rdata = fmap.ptr; rsize = fmap.len; } if(rsize < sizeof(magicMarker01)) ERR("%s data is too short ("SZFMT" bytes)\n", name, rsize); else if(memcmp(rdata, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); hrtf = LoadHrtf01(rdata+sizeof(magicMarker01), rsize-sizeof(magicMarker01), name ); } else if(memcmp(rdata, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); hrtf = LoadHrtf00(rdata+sizeof(magicMarker00), rsize-sizeof(magicMarker00), name ); } else ERR("Invalid header in %s: \"%.8s\"\n", name, (const char*)rdata); if(fmap.ptr) UnmapFileMem(&fmap); if(!hrtf) { ERR("Failed to load %s\n", name); goto done; } TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); entry->handle = hrtf; done: ATOMIC_FLAG_CLEAR(&LoadLock, almemory_order_seq_cst); return hrtf; } void FreeHrtfs(void) { struct HrtfEntry *Hrtf = LoadedHrtfs; LoadedHrtfs = NULL; while(Hrtf != NULL) { struct HrtfEntry *next = Hrtf->next; al_free(Hrtf->handle); al_free(Hrtf); Hrtf = next; } }