/** * OpenAL cross platform audio library * Copyright (C) 2011 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alSource.h" #include "alu.h" #include "bformatdec.h" #include "hrtf.h" #include "compat.h" #include "almalloc.h" /* Current data set limits defined by the makehrtf utility. */ #define MIN_IR_SIZE (8) #define MAX_IR_SIZE (128) #define MOD_IR_SIZE (8) #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (128) static const ALchar magicMarker00[8] = "MinPHR00"; static const ALchar magicMarker01[8] = "MinPHR01"; /* First value for pass-through coefficients (remaining are 0), used for omni- * directional sounds. */ static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/; static struct Hrtf *LoadedHrtfs = NULL; /* Calculate the elevation indices given the polar elevation in radians. * This will return two indices between 0 and (evcount - 1) and an * interpolation factor between 0.0 and 1.0. */ static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu) { ev = (F_PI_2 + ev) * (evcount-1) / F_PI; evidx[0] = fastf2u(ev); evidx[1] = minu(evidx[0] + 1, evcount-1); *evmu = ev - evidx[0]; } /* Calculate the azimuth indices given the polar azimuth in radians. This * will return two indices between 0 and (azcount - 1) and an interpolation * factor between 0.0 and 1.0. */ static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu) { az = (F_TAU + az) * azcount / F_TAU; azidx[0] = fastf2u(az) % azcount; azidx[1] = (azidx[0] + 1) % azcount; *azmu = az - floorf(az); } /* Calculates static HRIR coefficients and delays for the given polar * elevation and azimuth in radians. Linear interpolation is used to * increase the apparent resolution of the HRIR data set. The coefficients * are also normalized and attenuated by the specified gain. */ void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays) { ALuint evidx[2], lidx[4], ridx[4]; ALfloat mu[3], blend[4]; ALfloat dirfact; ALuint i; dirfact = 1.0f - (spread / F_TAU); /* Claculate elevation indices and interpolation factor. */ CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]); for(i = 0;i < 2;i++) { ALuint azcount = Hrtf->azCount[evidx[i]]; ALuint evoffset = Hrtf->evOffset[evidx[i]]; ALuint azidx[2]; /* Calculate azimuth indices and interpolation factor for this elevation. */ CalcAzIndices(azcount, azimuth, azidx, &mu[i]); /* Calculate a set of linear HRIR indices for left and right channels. */ lidx[i*2 + 0] = evoffset + azidx[0]; lidx[i*2 + 1] = evoffset + azidx[1]; ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount); ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount); } /* Calculate 4 blending weights for 2D bilinear interpolation. */ blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]); blend[1] = ( mu[0]) * (1.0f-mu[2]); blend[2] = (1.0f-mu[1]) * ( mu[2]); blend[3] = ( mu[1]) * ( mu[2]); /* Calculate the HRIR delays using linear interpolation. */ delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] + Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) * dirfact + 0.5f) << HRTFDELAY_BITS; delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] + Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) * dirfact + 0.5f) << HRTFDELAY_BITS; /* Calculate the sample offsets for the HRIR indices. */ lidx[0] *= Hrtf->irSize; lidx[1] *= Hrtf->irSize; lidx[2] *= Hrtf->irSize; lidx[3] *= Hrtf->irSize; ridx[0] *= Hrtf->irSize; ridx[1] *= Hrtf->irSize; ridx[2] *= Hrtf->irSize; ridx[3] *= Hrtf->irSize; /* Calculate the normalized and attenuated HRIR coefficients using linear * interpolation when there is enough gain to warrant it. Zero the * coefficients if gain is too low. */ if(gain > 0.0001f) { ALfloat c; i = 0; c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f); for(i = 1;i < Hrtf->irSize;i++) { c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] + Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]); coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] + Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]); coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f); } } else { for(i = 0;i < Hrtf->irSize;i++) { coeffs[i][0] = 0.0f; coeffs[i][1] = 0.0f; } } } ALuint BuildBFormatHrtf(const struct Hrtf *Hrtf, ALfloat (*coeffs)[HRIR_LENGTH][2], ALuint NumChannels) { static const struct { ALfloat elevation; ALfloat azimuth; } Ambi3DPoints[14] = { { DEG2RAD( 90.0f), DEG2RAD( 0.0f) }, { DEG2RAD( 35.0f), DEG2RAD( -45.0f) }, { DEG2RAD( 35.0f), DEG2RAD( 45.0f) }, { DEG2RAD( 35.0f), DEG2RAD( 135.0f) }, { DEG2RAD( 35.0f), DEG2RAD(-135.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 0.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 90.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 180.0f) }, { DEG2RAD( 0.0f), DEG2RAD( -90.0f) }, { DEG2RAD(-35.0f), DEG2RAD( -45.0f) }, { DEG2RAD(-35.0f), DEG2RAD( 45.0f) }, { DEG2RAD(-35.0f), DEG2RAD( 135.0f) }, { DEG2RAD(-35.0f), DEG2RAD(-135.0f) }, { DEG2RAD(-90.0f), DEG2RAD( 0.0f) }, }; static const ALfloat Ambi3DMatrix[14][2][MAX_AMBI_COEFFS] = { { { 0.18898176f, 0.000000000f, 0.188982460f, 0.000000000f }, { 0.0714283915f, 0.0000000000f, 0.1237180798f, 0.0000000000f } }, { { 0.18898176f, 0.109109004f, 0.109109004f, 0.109109004f }, { 0.0714283915f, 0.0714286206f, 0.0714286206f, 0.0714286206f } }, { { 0.18898176f, -0.109109004f, 0.109109004f, 0.109109004f }, { 0.0714283915f, -0.0714286206f, 0.0714286206f, 0.0714286206f } }, { { 0.18898176f, -0.109109004f, 0.109109004f, -0.109109004f }, { 0.0714283915f, -0.0714286206f, 0.0714286206f, -0.0714286206f } }, { { 0.18898176f, 0.109109004f, 0.109109004f, -0.109109004f }, { 0.0714283915f, 0.0714286206f, 0.0714286206f, -0.0714286206f } }, { { 0.18898176f, 0.000000000f, 0.000000000f, 0.188982460f }, { 0.0714283915f, 0.0000000000f, 0.0000000000f, 0.1237180798f } }, { { 0.18898176f, -0.188982460f, 0.000000000f, 0.000000000f }, { 0.0714283915f, -0.1237180798f, 0.0000000000f, 0.0000000000f } }, { { 0.18898176f, 0.000000000f, 0.000000000f, -0.188982460f }, { 0.0714283915f, 0.0000000000f, 0.0000000000f, -0.1237180798f } }, { { 0.18898176f, 0.188982460f, 0.000000000f, 0.000000000f }, { 0.0714283915f, 0.1237180798f, 0.0000000000f, 0.0000000000f } }, { { 0.18898176f, 0.109109004f, -0.109109004f, 0.109109004f }, { 0.0714283915f, 0.0714286206f, -0.0714286206f, 0.0714286206f } }, { { 0.18898176f, -0.109109004f, -0.109109004f, 0.109109004f }, { 0.0714283915f, -0.0714286206f, -0.0714286206f, 0.0714286206f } }, { { 0.18898176f, -0.109109004f, -0.109109004f, -0.109109004f }, { 0.0714283915f, -0.0714286206f, -0.0714286206f, -0.0714286206f } }, { { 0.18898176f, 0.109109004f, -0.109109004f, -0.109109004f }, { 0.0714283915f, 0.0714286206f, -0.0714286206f, -0.0714286206f } }, { { 0.18898176f, 0.000000000f, -0.188982460f, 0.000000000f }, { 0.0714283915f, 0.0000000000f, -0.1237180798f, 0.0000000000f } }, }; /* Change this to 2 for dual-band HRTF processing. May require a higher quality * band-splitter, or better calculation of the new IR length to deal with the * tail generated by the filter. */ #define NUM_BANDS 1 BandSplitter splitter; ALfloat temps[3][HRIR_LENGTH]; ALuint lidx[14], ridx[14]; ALuint min_delay = HRTF_HISTORY_LENGTH; ALuint max_length = 0; ALuint i, j, c, b; assert(NumChannels == 4); for(c = 0;c < COUNTOF(Ambi3DPoints);c++) { ALuint evidx, azidx; ALuint evoffset; ALuint azcount; /* Calculate elevation index. */ evidx = (ALuint)floorf((F_PI_2 + Ambi3DPoints[c].elevation) * (Hrtf->evCount-1)/F_PI + 0.5f); evidx = minu(evidx, Hrtf->evCount-1); azcount = Hrtf->azCount[evidx]; evoffset = Hrtf->evOffset[evidx]; /* Calculate azimuth index for this elevation. */ azidx = (ALuint)floorf((F_TAU+Ambi3DPoints[c].azimuth) * azcount/F_TAU + 0.5f) % azcount; /* Calculate indices for left and right channels. */ lidx[c] = evoffset + azidx; ridx[c] = evoffset + ((azcount-azidx) % azcount); min_delay = minu(min_delay, minu(Hrtf->delays[lidx[c]], Hrtf->delays[ridx[c]])); } memset(temps, 0, sizeof(temps)); bandsplit_init(&splitter, 400.0f / (ALfloat)Hrtf->sampleRate); for(c = 0;c < COUNTOF(Ambi3DMatrix);c++) { const ALshort *fir; ALuint delay; /* Convert the left FIR from shorts to float */ fir = &Hrtf->coeffs[lidx[c] * Hrtf->irSize]; if(NUM_BANDS == 1) { for(i = 0;i < Hrtf->irSize;i++) temps[0][i] = fir[i] / 32767.0f; } else { /* Band-split left HRIR into low and high frequency responses. */ bandsplit_clear(&splitter); for(i = 0;i < Hrtf->irSize;i++) temps[2][i] = fir[i] / 32767.0f; bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH); } /* Add to the left output coefficients with the specified delay. */ delay = Hrtf->delays[lidx[c]] - min_delay; for(i = 0;i < NumChannels;++i) { for(b = 0;b < NUM_BANDS;b++) { ALuint k = 0; for(j = delay;j < HRIR_LENGTH;++j) coeffs[i][j][0] += temps[b][k++] * Ambi3DMatrix[c][b][i]; } } max_length = maxu(max_length, minu(delay + Hrtf->irSize, HRIR_LENGTH)); /* Convert the right FIR from shorts to float */ fir = &Hrtf->coeffs[ridx[c] * Hrtf->irSize]; if(NUM_BANDS == 1) { for(i = 0;i < Hrtf->irSize;i++) temps[0][i] = fir[i] / 32767.0f; } else { /* Band-split right HRIR into low and high frequency responses. */ bandsplit_clear(&splitter); for(i = 0;i < Hrtf->irSize;i++) temps[2][i] = fir[i] / 32767.0f; bandsplit_process(&splitter, temps[0], temps[1], temps[2], HRIR_LENGTH); } /* Add to the right output coefficients with the specified delay. */ delay = Hrtf->delays[ridx[c]] - min_delay; for(i = 0;i < NumChannels;++i) { for(b = 0;b < NUM_BANDS;b++) { ALuint k = 0; for(j = delay;j < HRIR_LENGTH;++j) coeffs[i][j][1] += temps[b][k++] * Ambi3DMatrix[c][b][i]; } } max_length = maxu(max_length, minu(delay + Hrtf->irSize, HRIR_LENGTH)); } TRACE("Skipped min delay: %u, new combined length: %u\n", min_delay, max_length); #undef NUM_BANDS return max_length; } static struct Hrtf *LoadHrtf00(const ALubyte *data, size_t datalen, const_al_string filename) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALushort irSize = 0; ALubyte evCount = 0; ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; const ALubyte *delays = NULL; ALuint i, j; if(datalen < 9) { ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", al_string_get_cstr(filename), 9, datalen); return NULL; } rate = *(data++); rate |= *(data++)<<8; rate |= *(data++)<<16; rate |= *(data++)<<24; datalen -= 4; irCount = *(data++); irCount |= *(data++)<<8; datalen -= 2; irSize = *(data++); irSize |= *(data++)<<8; datalen -= 2; evCount = *(data++); datalen -= 1; if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; if(datalen < evCount*2) { ERR("Unexpected end of %s data (req %d, rem "SZFMT")\n", al_string_get_cstr(filename), evCount*2, datalen); return NULL; } azCount = malloc(sizeof(azCount[0])*evCount); evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { evOffset[0] = *(data++); evOffset[0] |= *(data++)<<8; datalen -= 2; for(i = 1;i < evCount;i++) { evOffset[i] = *(data++); evOffset[i] |= *(data++)<<8; datalen -= 2; if(evOffset[i] <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]); failed = AL_TRUE; } azCount[i-1] = evOffset[i] - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(irCount <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n", i-1, evOffset[i-1], irCount); failed = AL_TRUE; } azCount[i-1] = irCount - evOffset[i-1]; if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(!failed) { coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); if(coeffs == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { size_t reqsize = 2*irSize*irCount + irCount; if(datalen < reqsize) { ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT")\n", al_string_get_cstr(filename), reqsize, datalen); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { coeffs[i+j] = *(data++); coeffs[i+j] |= *(data++)<<8; datalen -= 2; } } delays = data; data += irCount; datalen -= irCount; for(i = 0;i < irCount;i++) { if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } } if(!failed) { size_t total = sizeof(struct Hrtf); total += sizeof(azCount[0])*evCount; total = (total+1)&~1; /* Align for (u)short fields */ total += sizeof(evOffset[0])*evCount; total += sizeof(coeffs[0])*irSize*irCount; total += sizeof(delays[0])*irCount; total += al_string_length(filename)+1; Hrtf = al_calloc(16, total); if(Hrtf == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { char *base = (char*)Hrtf; uintptr_t offset = sizeof(*Hrtf); Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; Hrtf->azCount = ((ALubyte*)(base + offset)); offset += evCount*sizeof(Hrtf->azCount[0]); offset = (offset+1)&~1; /* Align for (u)short fields */ Hrtf->evOffset = ((ALushort*)(base + offset)); offset += evCount*sizeof(Hrtf->evOffset[0]); Hrtf->coeffs = ((ALshort*)(base + offset)); offset += irSize*irCount*sizeof(Hrtf->coeffs[0]); Hrtf->delays = ((ALubyte*)(base + offset)); offset += irCount*sizeof(Hrtf->delays[0]); Hrtf->filename = ((char*)(base + offset)); Hrtf->next = NULL; memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount); memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount); memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount); memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount); memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1); } free(azCount); free(evOffset); free(coeffs); return Hrtf; } static struct Hrtf *LoadHrtf01(const ALubyte *data, size_t datalen, const_al_string filename) { const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1; struct Hrtf *Hrtf = NULL; ALboolean failed = AL_FALSE; ALuint rate = 0, irCount = 0; ALubyte irSize = 0, evCount = 0; const ALubyte *azCount = NULL; ALushort *evOffset = NULL; ALshort *coeffs = NULL; const ALubyte *delays = NULL; ALuint i, j; if(datalen < 6) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", al_string_get_cstr(filename), 6, datalen); return NULL; } rate = *(data++); rate |= *(data++)<<8; rate |= *(data++)<<16; rate |= *(data++)<<24; datalen -= 4; irSize = *(data++); datalen -= 1; evCount = *(data++); datalen -= 1; if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) { ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return NULL; if(datalen < evCount) { ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n", al_string_get_cstr(filename), evCount, datalen); return NULL; } azCount = data; data += evCount; datalen -= evCount; evOffset = malloc(sizeof(evOffset[0])*evCount); if(azCount == NULL || evOffset == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } if(!failed) { for(i = 0;i < evCount;i++) { if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } } if(!failed) { evOffset[0] = 0; irCount = azCount[0]; for(i = 1;i < evCount;i++) { evOffset[i] = evOffset[i-1] + azCount[i-1]; irCount += azCount[i]; } coeffs = malloc(sizeof(coeffs[0])*irSize*irCount); if(coeffs == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { size_t reqsize = 2*irSize*irCount + irCount; if(datalen < reqsize) { ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n", al_string_get_cstr(filename), reqsize, datalen); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < irCount*irSize;i+=irSize) { for(j = 0;j < irSize;j++) { ALshort coeff; coeff = *(data++); coeff |= *(data++)<<8; datalen -= 2; coeffs[i+j] = coeff; } } delays = data; data += irCount; datalen -= irCount; for(i = 0;i < irCount;i++) { if(delays[i] > maxDelay) { ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay); failed = AL_TRUE; } } } if(!failed) { size_t total = sizeof(struct Hrtf); total += sizeof(azCount[0])*evCount; total = (total+1)&~1; /* Align for (u)short fields */ total += sizeof(evOffset[0])*evCount; total += sizeof(coeffs[0])*irSize*irCount; total += sizeof(delays[0])*irCount; total += al_string_length(filename)+1; Hrtf = al_calloc(16, total); if(Hrtf == NULL) { ERR("Out of memory.\n"); failed = AL_TRUE; } } if(!failed) { char *base = (char*)Hrtf; uintptr_t offset = sizeof(*Hrtf); Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->evCount = evCount; Hrtf->azCount = ((ALubyte*)(base + offset)); offset += evCount*sizeof(Hrtf->azCount[0]); offset = (offset+1)&~1; /* Align for (u)short fields */ Hrtf->evOffset = ((ALushort*)(base + offset)); offset += evCount*sizeof(Hrtf->evOffset[0]); Hrtf->coeffs = ((ALshort*)(base + offset)); offset += irSize*irCount*sizeof(Hrtf->coeffs[0]); Hrtf->delays = ((ALubyte*)(base + offset)); offset += irCount*sizeof(Hrtf->delays[0]); Hrtf->filename = ((char*)(base + offset)); Hrtf->next = NULL; memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount); memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount); memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount); memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount); memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1); } free(evOffset); free(coeffs); return Hrtf; } static void AddFileEntry(vector_HrtfEntry *list, al_string *filename) { HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL }; struct Hrtf *hrtf = NULL; const HrtfEntry *iter; struct FileMapping fmap; const char *name; const char *ext; int i; #define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0) VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME); if(iter != VECTOR_END(*list)) { TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename)); goto done; } #undef MATCH_FNAME entry.hrtf = LoadedHrtfs; while(entry.hrtf) { if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0) { TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename)); goto skip_load; } entry.hrtf = entry.hrtf->next; } TRACE("Loading %s...\n", al_string_get_cstr(*filename)); fmap = MapFileToMem(al_string_get_cstr(*filename)); if(fmap.ptr == NULL) { ERR("Could not open %s\n", al_string_get_cstr(*filename)); goto done; } if(fmap.len < sizeof(magicMarker01)) ERR("%s data is too short ("SZFMT" bytes)\n", al_string_get_cstr(*filename), fmap.len); else if(memcmp(fmap.ptr, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); hrtf = LoadHrtf01((const ALubyte*)fmap.ptr+sizeof(magicMarker01), fmap.len-sizeof(magicMarker01), *filename ); } else if(memcmp(fmap.ptr, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); hrtf = LoadHrtf00((const ALubyte*)fmap.ptr+sizeof(magicMarker00), fmap.len-sizeof(magicMarker00), *filename ); } else ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), (const char*)fmap.ptr); UnmapFileMem(&fmap); if(!hrtf) { ERR("Failed to load %s\n", al_string_get_cstr(*filename)); goto done; } hrtf->next = LoadedHrtfs; LoadedHrtfs = hrtf; TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); entry.hrtf = hrtf; skip_load: /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ name = strrchr(al_string_get_cstr(*filename), '/'); if(!name) name = strrchr(al_string_get_cstr(*filename), '\\'); if(!name) name = al_string_get_cstr(*filename); else ++name; ext = strrchr(name, '.'); i = 0; do { if(!ext) al_string_copy_cstr(&entry.name, name); else al_string_copy_range(&entry.name, name, ext); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); al_string_append_cstr(&entry.name, str); } ++i; #define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0) VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME); #undef MATCH_NAME } while(iter != VECTOR_END(*list)); TRACE("Adding entry \"%s\" from file \"%s\"\n", al_string_get_cstr(entry.name), al_string_get_cstr(*filename)); VECTOR_PUSH_BACK(*list, entry); done: al_string_deinit(filename); } /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer * for input instead of opening the given filename. */ static void AddBuiltInEntry(vector_HrtfEntry *list, const ALubyte *data, size_t datalen, al_string *filename) { HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL }; struct Hrtf *hrtf = NULL; const HrtfEntry *iter; int i; #define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0) VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME); if(iter != VECTOR_END(*list)) { TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename)); goto done; } #undef MATCH_FNAME entry.hrtf = LoadedHrtfs; while(entry.hrtf) { if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0) { TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename)); goto skip_load; } entry.hrtf = entry.hrtf->next; } TRACE("Loading %s...\n", al_string_get_cstr(*filename)); if(datalen < sizeof(magicMarker01)) { ERR("%s data is too short ("SZFMT" bytes)\n", al_string_get_cstr(*filename), datalen); goto done; } if(memcmp(data, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); hrtf = LoadHrtf01(data+sizeof(magicMarker01), datalen-sizeof(magicMarker01), *filename ); } else if(memcmp(data, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); hrtf = LoadHrtf00(data+sizeof(magicMarker00), datalen-sizeof(magicMarker00), *filename ); } else ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), data); if(!hrtf) { ERR("Failed to load %s\n", al_string_get_cstr(*filename)); goto done; } hrtf->next = LoadedHrtfs; LoadedHrtfs = hrtf; TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); entry.hrtf = hrtf; skip_load: i = 0; do { al_string_copy(&entry.name, *filename); if(i != 0) { char str[64]; snprintf(str, sizeof(str), " #%d", i+1); al_string_append_cstr(&entry.name, str); } ++i; #define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0) VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME); #undef MATCH_NAME } while(iter != VECTOR_END(*list)); TRACE("Adding built-in entry \"%s\"\n", al_string_get_cstr(entry.name)); VECTOR_PUSH_BACK(*list, entry); done: al_string_deinit(filename); } #ifndef ALSOFT_EMBED_HRTF_DATA #define IDR_DEFAULT_44100_MHR 0 #define IDR_DEFAULT_48000_MHR 1 static const ALubyte *GetResource(int UNUSED(name), size_t *size) { *size = 0; return NULL; } #else #include "hrtf_res.h" #ifdef _WIN32 static const ALubyte *GetResource(int name, size_t *size) { HMODULE handle; HGLOBAL res; HRSRC rc; GetModuleHandleExW( GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, (LPCWSTR)GetResource, &handle ); rc = FindResourceW(handle, MAKEINTRESOURCEW(name), MAKEINTRESOURCEW(MHRTYPE)); res = LoadResource(handle, rc); *size = SizeofResource(handle, rc); return LockResource(res); } #else extern const ALubyte _binary_default_44100_mhr_start[] HIDDEN_DECL; extern const ALubyte _binary_default_44100_mhr_end[] HIDDEN_DECL; extern const ALubyte _binary_default_44100_mhr_size[] HIDDEN_DECL; extern const ALubyte _binary_default_48000_mhr_start[] HIDDEN_DECL; extern const ALubyte _binary_default_48000_mhr_end[] HIDDEN_DECL; extern const ALubyte _binary_default_48000_mhr_size[] HIDDEN_DECL; static const ALubyte *GetResource(int name, size_t *size) { if(name == IDR_DEFAULT_44100_MHR) { /* Make sure all symbols are referenced, to ensure the compiler won't * ignore the declarations and lose the visibility attribute used to * hide them (would be nice if ld or objcopy could automatically mark * them as hidden when generating them, but apparently they can't). */ const void *volatile ptr =_binary_default_44100_mhr_size; (void)ptr; *size = _binary_default_44100_mhr_end - _binary_default_44100_mhr_start; return _binary_default_44100_mhr_start; } if(name == IDR_DEFAULT_48000_MHR) { const void *volatile ptr =_binary_default_48000_mhr_size; (void)ptr; *size = _binary_default_48000_mhr_end - _binary_default_48000_mhr_start; return _binary_default_48000_mhr_start; } *size = 0; return NULL; } #endif #endif vector_HrtfEntry EnumerateHrtf(const_al_string devname) { vector_HrtfEntry list = VECTOR_INIT_STATIC(); const char *defaulthrtf = ""; const char *pathlist = ""; bool usedefaults = true; if(ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf-paths", &pathlist)) { while(pathlist && *pathlist) { const char *next, *end; while(isspace(*pathlist) || *pathlist == ',') pathlist++; if(*pathlist == '\0') continue; next = strchr(pathlist, ','); if(next) end = next++; else { end = pathlist + strlen(pathlist); usedefaults = false; } while(end != pathlist && isspace(*(end-1))) --end; if(end != pathlist) { al_string pname = AL_STRING_INIT_STATIC(); vector_al_string flist; al_string_append_range(&pname, pathlist, end); flist = SearchDataFiles(".mhr", al_string_get_cstr(pname)); VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list); VECTOR_DEINIT(flist); al_string_deinit(&pname); } pathlist = next; } } else if(ConfigValueExists(al_string_get_cstr(devname), NULL, "hrtf_tables")) ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n"); if(usedefaults) { vector_al_string flist; const ALubyte *rdata; size_t rsize; flist = SearchDataFiles(".mhr", "openal/hrtf"); VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list); VECTOR_DEINIT(flist); rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize); if(rdata != NULL && rsize > 0) { al_string ename = AL_STRING_INIT_STATIC(); al_string_copy_cstr(&ename, "Built-In 44100hz"); AddBuiltInEntry(&list, rdata, rsize, &ename); } rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize); if(rdata != NULL && rsize > 0) { al_string ename = AL_STRING_INIT_STATIC(); al_string_copy_cstr(&ename, "Built-In 48000hz"); AddBuiltInEntry(&list, rdata, rsize, &ename); } } if(VECTOR_SIZE(list) > 1 && ConfigValueStr(al_string_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf)) { const HrtfEntry *iter; /* Find the preferred HRTF and move it to the front of the list. */ #define FIND_ENTRY(i) (al_string_cmp_cstr((i)->name, defaulthrtf) == 0) VECTOR_FIND_IF(iter, const HrtfEntry, list, FIND_ENTRY); if(iter != VECTOR_END(list) && iter != VECTOR_BEGIN(list)) { HrtfEntry entry = *iter; memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0), (iter-VECTOR_BEGIN(list))*sizeof(HrtfEntry)); VECTOR_ELEM(list,0) = entry; } else WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf); #undef FIND_ENTRY } return list; } void FreeHrtfList(vector_HrtfEntry *list) { #define CLEAR_ENTRY(i) do { \ al_string_deinit(&(i)->name); \ } while(0) VECTOR_FOR_EACH(HrtfEntry, *list, CLEAR_ENTRY); VECTOR_DEINIT(*list); #undef CLEAR_ENTRY } void FreeHrtfs(void) { struct Hrtf *Hrtf = LoadedHrtfs; LoadedHrtfs = NULL; while(Hrtf != NULL) { struct Hrtf *next = Hrtf->next; al_free(Hrtf); Hrtf = next; } }