/** * OpenAL cross platform audio library * Copyright (C) 2011 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alSource.h" /* External HRTF file format (LE byte order): * * ALchar magic[8] = "MinPHR00"; * ALuint sampleRate; * * ALushort hrirCount; // Required value: 828 * ALushort hrirSize; // Required value: 32 * ALubyte evCount; // Required value: 19 * * ALushort evOffset[evCount]; // Required values: * { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 } * * ALshort coefficients[hrirCount][hrirSize]; * ALubyte delays[hrirCount]; // Element values must not exceed 127 */ static const ALchar magicMarker[8] = "MinPHR00"; #define HRIR_COUNT 828 #define ELEV_COUNT 19 static const ALushort evOffset[ELEV_COUNT] = { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 }; static const ALubyte azCount[ELEV_COUNT] = { 1, 12, 24, 36, 45, 56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24, 12, 1 }; static const struct Hrtf { ALuint sampleRate; ALshort coeffs[HRIR_COUNT][HRIR_LENGTH]; ALubyte delays[HRIR_COUNT]; } DefaultHrtf = { 44100, #include "hrtf_tables.inc" }; static struct Hrtf *LoadedHrtfs = NULL; static ALuint NumLoadedHrtfs = 0; // Calculate the elevation indices given the polar elevation in radians. // This will return two indices between 0 and (ELEV_COUNT-1) and an // interpolation factor between 0.0 and 1.0. static void CalcEvIndices(ALfloat ev, ALuint *evidx, ALfloat *evmu) { ev = (F_PI_2 + ev) * (ELEV_COUNT-1) / F_PI; evidx[0] = fastf2u(ev); evidx[1] = minu(evidx[0] + 1, ELEV_COUNT-1); *evmu = ev - evidx[0]; } // Calculate the azimuth indices given the polar azimuth in radians. This // will return two indices between 0 and (azCount [ei] - 1) and an // interpolation factor between 0.0 and 1.0. static void CalcAzIndices(ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu) { az = (F_PI*2.0f + az) * azCount[evidx] / (F_PI*2.0f); azidx[0] = fastf2u(az) % azCount[evidx]; azidx[1] = (azidx[0] + 1) % azCount[evidx]; *azmu = az - aluFloor(az); } // Calculates the normalized HRTF transition factor (delta) from the changes // in gain and listener to source angle between updates. The result is a // normalized delta factor than can be used to calculate moving HRIR stepping // values. ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3]) { ALfloat gainChange, angleChange; // Calculate the normalized dB gain change. newGain = maxf(newGain, 0.0001f); oldGain = maxf(oldGain, 0.0001f); gainChange = aluFabs(aluLog10(newGain / oldGain) / aluLog10(0.0001f)); // Calculate the normalized listener to source angle change when there is // enough gain to notice it. angleChange = 0.0f; if(gainChange > 0.0001f || newGain > 0.0001f) { // No angle change when the directions are equal or degenerate (when // both have zero length). if(newdir[0]-olddir[0] || newdir[1]-olddir[1] || newdir[2]-olddir[2]) angleChange = aluAcos(olddir[0]*newdir[0] + olddir[1]*newdir[1] + olddir[2]*newdir[2]) / F_PI; } // Use the largest of the two changes for the delta factor, and apply a // significance shaping function to it. return clampf(angleChange*2.0f, gainChange*2.0f, 1.0f); } // Calculates static HRIR coefficients and delays for the given polar // elevation and azimuth in radians. Linear interpolation is used to // increase the apparent resolution of the HRIR dataset. The coefficients // are also normalized and attenuated by the specified gain. void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays) { ALuint evidx[2], azidx[2]; ALfloat mu[3]; ALuint lidx[4], ridx[4]; ALuint i; // Claculate elevation indices and interpolation factor. CalcEvIndices(elevation, evidx, &mu[2]); // Calculate azimuth indices and interpolation factor for the first // elevation. CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]); // Calculate the first set of linear HRIR indices for left and right // channels. lidx[0] = evOffset[evidx[0]] + azidx[0]; lidx[1] = evOffset[evidx[0]] + azidx[1]; ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]); ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]); // Calculate azimuth indices and interpolation factor for the second // elevation. CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]); // Calculate the second set of linear HRIR indices for left and right // channels. lidx[2] = evOffset[evidx[1]] + azidx[0]; lidx[3] = evOffset[evidx[1]] + azidx[1]; ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]); ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]); // Calculate the normalized and attenuated HRIR coefficients using linear // interpolation when there is enough gain to warrant it. Zero the // coefficients if gain is too low. if(gain > 0.0001f) { gain *= 1.0f/32767.0f; for(i = 0;i < HRIR_LENGTH;i++) { coeffs[i][0] = lerp(lerp(Hrtf->coeffs[lidx[0]][i], Hrtf->coeffs[lidx[1]][i], mu[0]), lerp(Hrtf->coeffs[lidx[2]][i], Hrtf->coeffs[lidx[3]][i], mu[1]), mu[2]) * gain; coeffs[i][1] = lerp(lerp(Hrtf->coeffs[ridx[0]][i], Hrtf->coeffs[ridx[1]][i], mu[0]), lerp(Hrtf->coeffs[ridx[2]][i], Hrtf->coeffs[ridx[3]][i], mu[1]), mu[2]) * gain; } } else { for(i = 0;i < HRIR_LENGTH;i++) { coeffs[i][0] = 0.0f; coeffs[i][1] = 0.0f; } } // Calculate the HRIR delays using linear interpolation. delays[0] = fastf2u(lerp(lerp(Hrtf->delays[lidx[0]], Hrtf->delays[lidx[1]], mu[0]), lerp(Hrtf->delays[lidx[2]], Hrtf->delays[lidx[3]], mu[1]), mu[2]) * 65536.0f); delays[1] = fastf2u(lerp(lerp(Hrtf->delays[ridx[0]], Hrtf->delays[ridx[1]], mu[0]), lerp(Hrtf->delays[ridx[2]], Hrtf->delays[ridx[3]], mu[1]), mu[2]) * 65536.0f); } // Calculates the moving HRIR target coefficients, target delays, and // stepping values for the given polar elevation and azimuth in radians. // Linear interpolation is used to increase the apparent resolution of the // HRIR dataset. The coefficients are also normalized and attenuated by the // specified gain. Stepping resolution and count is determined using the // given delta factor between 0.0 and 1.0. ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep) { ALuint evidx[2], azidx[2]; ALuint lidx[4], ridx[4]; ALfloat left, right; ALfloat mu[3]; ALfloat step; ALuint i; // Claculate elevation indices and interpolation factor. CalcEvIndices(elevation, evidx, &mu[2]); // Calculate azimuth indices and interpolation factor for the first // elevation. CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]); // Calculate the first set of linear HRIR indices for left and right // channels. lidx[0] = evOffset[evidx[0]] + azidx[0]; lidx[1] = evOffset[evidx[0]] + azidx[1]; ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]); ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]); // Calculate azimuth indices and interpolation factor for the second // elevation. CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]); // Calculate the second set of linear HRIR indices for left and right // channels. lidx[2] = evOffset[evidx[1]] + azidx[0]; lidx[3] = evOffset[evidx[1]] + azidx[1]; ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]); ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]); // Calculate the stepping parameters. delta = maxf(aluFloor(delta*(Hrtf->sampleRate*0.015f) + 0.5f), 1.0f); step = 1.0f / delta; // Calculate the normalized and attenuated target HRIR coefficients using // linear interpolation when there is enough gain to warrant it. Zero // the target coefficients if gain is too low. Then calculate the // coefficient stepping values using the target and previous running // coefficients. if(gain > 0.0001f) { gain *= 1.0f/32767.0f; for(i = 0;i < HRIR_LENGTH;i++) { left = coeffs[i][0] - (coeffStep[i][0] * counter); right = coeffs[i][1] - (coeffStep[i][1] * counter); coeffs[i][0] = lerp(lerp(Hrtf->coeffs[lidx[0]][i], Hrtf->coeffs[lidx[1]][i], mu[0]), lerp(Hrtf->coeffs[lidx[2]][i], Hrtf->coeffs[lidx[3]][i], mu[1]), mu[2]) * gain; coeffs[i][1] = lerp(lerp(Hrtf->coeffs[ridx[0]][i], Hrtf->coeffs[ridx[1]][i], mu[0]), lerp(Hrtf->coeffs[ridx[2]][i], Hrtf->coeffs[ridx[3]][i], mu[1]), mu[2]) * gain; coeffStep[i][0] = step * (coeffs[i][0] - left); coeffStep[i][1] = step * (coeffs[i][1] - right); } } else { for(i = 0;i < HRIR_LENGTH;i++) { left = coeffs[i][0] - (coeffStep[i][0] * counter); right = coeffs[i][1] - (coeffStep[i][1] * counter); coeffs[i][0] = 0.0f; coeffs[i][1] = 0.0f; coeffStep[i][0] = step * -left; coeffStep[i][1] = step * -right; } } // Calculate the HRIR delays using linear interpolation. Then calculate // the delay stepping values using the target and previous running // delays. left = (ALfloat)(delays[0] - (delayStep[0] * counter)); right = (ALfloat)(delays[1] - (delayStep[1] * counter)); delays[0] = fastf2u(lerp(lerp(Hrtf->delays[lidx[0]], Hrtf->delays[lidx[1]], mu[0]), lerp(Hrtf->delays[lidx[2]], Hrtf->delays[lidx[3]], mu[1]), mu[2]) * 65536.0f); delays[1] = fastf2u(lerp(lerp(Hrtf->delays[ridx[0]], Hrtf->delays[ridx[1]], mu[0]), lerp(Hrtf->delays[ridx[2]], Hrtf->delays[ridx[3]], mu[1]), mu[2]) * 65536.0f); delayStep[0] = fastf2i(step * (delays[0] - left)); delayStep[1] = fastf2i(step * (delays[1] - right)); // The stepping count is the number of samples necessary for the HRIR to // complete its transition. The mixer will only apply stepping for this // many samples. return fastf2u(delta); } const struct Hrtf *GetHrtf(ALCdevice *device) { if(device->FmtChans == DevFmtStereo) { ALuint i; for(i = 0;i < NumLoadedHrtfs;i++) { if(device->Frequency == LoadedHrtfs[i].sampleRate) return &LoadedHrtfs[i]; } if(device->Frequency == DefaultHrtf.sampleRate) return &DefaultHrtf; } ERR("Incompatible format: %s %uhz\n", DevFmtChannelsString(device->FmtChans), device->Frequency); return NULL; } void InitHrtf(void) { char *fnamelist=NULL, *next=NULL; const char *val; if(ConfigValueStr(NULL, "hrtf_tables", &val)) next = fnamelist = strdup(val); while(next && *next) { const ALubyte maxDelay = SRC_HISTORY_LENGTH-1; struct Hrtf newdata; ALboolean failed; ALchar magic[9]; ALsizei i, j; char *fname; FILE *f; fname = next; next = strchr(fname, ','); if(next) { while(next != fname) { next--; if(!isspace(*next)) { *(next++) = '\0'; break; } } while(isspace(*next) || *next == ',') next++; } if(!fname[0]) continue; TRACE("Loading %s\n", fname); f = fopen(fname, "rb"); if(f == NULL) { ERR("Could not open %s\n", fname); continue; } failed = AL_FALSE; if(fread(magic, 1, sizeof(magicMarker), f) != sizeof(magicMarker)) { ERR("Failed to read magic marker\n"); failed = AL_TRUE; } else if(memcmp(magic, magicMarker, sizeof(magicMarker)) != 0) { magic[8] = 0; ERR("Invalid magic marker: \"%s\"\n", magic); failed = AL_TRUE; } if(!failed) { ALushort hrirCount, hrirSize; ALubyte evCount; newdata.sampleRate = fgetc(f); newdata.sampleRate |= fgetc(f)<<8; newdata.sampleRate |= fgetc(f)<<16; newdata.sampleRate |= fgetc(f)<<24; hrirCount = fgetc(f); hrirCount |= fgetc(f)<<8; hrirSize = fgetc(f); hrirSize |= fgetc(f)<<8; evCount = fgetc(f); if(hrirCount != HRIR_COUNT || hrirSize != HRIR_LENGTH || evCount != ELEV_COUNT) { ERR("Unsupported value: hrirCount=%d (%d), hrirSize=%d (%d), evCount=%d (%d)\n", hrirCount, HRIR_COUNT, hrirSize, HRIR_LENGTH, evCount, ELEV_COUNT); failed = AL_TRUE; } } if(!failed) { for(i = 0;i < HRIR_COUNT;i++) { ALushort offset; offset = fgetc(f); offset |= fgetc(f)<<8; if(offset != evOffset[i]) { ERR("Unsupported evOffset[%d] value: %d (%d)\n", i, offset, evOffset[i]); failed = AL_TRUE; } } } if(!failed) { for(i = 0;i < HRIR_COUNT;i++) { for(j = 0;j < HRIR_LENGTH;j++) { ALshort coeff; coeff = fgetc(f); coeff |= fgetc(f)<<8; newdata.coeffs[i][j] = coeff; } } for(i = 0;i < HRIR_COUNT;i++) { ALubyte delay; delay = fgetc(f); newdata.delays[i] = delay; if(delay > maxDelay) { ERR("Invalid delay[%d]: %d (%d)\n", i, delay, maxDelay); failed = AL_TRUE; } } if(feof(f)) { ERR("Premature end of data\n"); failed = AL_TRUE; } } fclose(f); f = NULL; if(!failed) { void *temp = realloc(LoadedHrtfs, (NumLoadedHrtfs+1)*sizeof(LoadedHrtfs[0])); if(temp != NULL) { LoadedHrtfs = temp; TRACE("Loaded HRTF support for format: %s %uhz\n", DevFmtChannelsString(DevFmtStereo), newdata.sampleRate); LoadedHrtfs[NumLoadedHrtfs++] = newdata; } } else ERR("Failed to load %s\n", fname); } free(fnamelist); fnamelist = NULL; } void FreeHrtf(void) { NumLoadedHrtfs = 0; free(LoadedHrtfs); LoadedHrtfs = NULL; }