/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alSource.h" #include "alBuffer.h" #include "alListener.h" #include "alAuxEffectSlot.h" #include "alu.h" #include "bs2b.h" #include "mixer_defs.h" DryMixerFunc SelectDirectMixer(void) { #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixDirect_SSE; #endif #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixDirect_Neon; #endif return MixDirect_C; } DryMixerFunc SelectHrtfMixer(void) { #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixDirect_Hrtf_SSE; #endif #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixDirect_Hrtf_Neon; #endif return MixDirect_Hrtf_C; } WetMixerFunc SelectSendMixer(void) { #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixSend_SSE; #endif #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixSend_Neon; #endif return MixSend_C; } static __inline ALfloat Sample_ALbyte(ALbyte val) { return val * (1.0f/127.0f); } static __inline ALfloat Sample_ALshort(ALshort val) { return val * (1.0f/32767.0f); } static __inline ALfloat Sample_ALfloat(ALfloat val) { return val; } #define DECL_TEMPLATE(T) \ static void Load_##T(ALfloat *dst, const T *src, ALuint samples) \ { \ ALuint i; \ for(i = 0;i < samples;i++) \ dst[i] = Sample_##T(src[i]); \ } DECL_TEMPLATE(ALbyte) DECL_TEMPLATE(ALshort) DECL_TEMPLATE(ALfloat) #undef DECL_TEMPLATE static void LoadStack(ALfloat *dst, const ALvoid *src, enum FmtType srctype, ALuint samples) { switch(srctype) { case FmtByte: Load_ALbyte(dst, src, samples); break; case FmtShort: Load_ALshort(dst, src, samples); break; case FmtFloat: Load_ALfloat(dst, src, samples); break; } } static void SilenceStack(ALfloat *dst, ALuint samples) { ALuint i; for(i = 0;i < samples;i++) dst[i] = 0.0f; } static __inline ALfloat point32(const ALfloat *vals, ALint step, ALint frac) { return vals[0]; (void)step; (void)frac; } static __inline ALfloat lerp32(const ALfloat *vals, ALint step, ALint frac) { return lerp(vals[0], vals[step], frac * (1.0f/FRACTIONONE)); } static __inline ALfloat cubic32(const ALfloat *vals, ALint step, ALint frac) { return cubic(vals[-step], vals[0], vals[step], vals[step+step], frac * (1.0f/FRACTIONONE)); } #define DECL_TEMPLATE(Sampler) \ static void Resample_##Sampler(const ALfloat *data, ALuint frac, \ ALuint increment, ALuint NumChannels, ALfloat *RESTRICT OutBuffer, \ ALuint BufferSize) \ { \ ALuint pos = 0; \ ALfloat value; \ ALuint i; \ \ for(i = 0;i < BufferSize+1;i++) \ { \ value = Sampler(data + pos*NumChannels, NumChannels, frac); \ OutBuffer[i] = value; \ \ frac += increment; \ pos += frac>>FRACTIONBITS; \ frac &= FRACTIONMASK; \ } \ } DECL_TEMPLATE(point32) DECL_TEMPLATE(lerp32) DECL_TEMPLATE(cubic32) #undef DECL_TEMPLATE static void Resample(enum Resampler Resampler, const ALfloat *data, ALuint frac, ALuint increment, ALuint NumChannels, ALfloat *RESTRICT OutBuffer, ALuint BufferSize) { if(increment == FRACTIONONE) goto do_point; switch(Resampler) { case PointResampler: do_point: Resample_point32(data, frac, increment, NumChannels, OutBuffer, BufferSize); break; case LinearResampler: Resample_lerp32(data, frac, increment, NumChannels, OutBuffer, BufferSize); break; case CubicResampler: Resample_cubic32(data, frac, increment, NumChannels, OutBuffer, BufferSize); break; case ResamplerMax: /* Shouldn't happen */ break; } } ALvoid MixSource(ALsource *Source, ALCdevice *Device, ALuint SamplesToDo) { ALbufferlistitem *BufferListItem; ALuint DataPosInt, DataPosFrac; ALuint BuffersPlayed; ALboolean Looping; ALuint increment; enum Resampler Resampler; ALenum State; ALuint OutPos; ALuint NumChannels; ALuint FrameSize; ALint64 DataSize64; ALuint i, j; /* Get source info */ State = Source->state; BuffersPlayed = Source->BuffersPlayed; DataPosInt = Source->position; DataPosFrac = Source->position_fraction; Looping = Source->Looping; increment = Source->Params.Step; Resampler = Source->Resampler; NumChannels = Source->NumChannels; FrameSize = NumChannels * Source->SampleSize; /* Get current buffer queue item */ BufferListItem = Source->queue; for(i = 0;i < BuffersPlayed;i++) BufferListItem = BufferListItem->next; OutPos = 0; do { const ALuint BufferPrePadding = ResamplerPrePadding[Resampler]; const ALuint BufferPadding = ResamplerPadding[Resampler]; ALfloat StackData[BUFFERSIZE]; ALfloat *SrcData = StackData; ALuint SrcDataSize = 0; ALuint BufferSize; /* Figure out how many buffer bytes will be needed */ DataSize64 = SamplesToDo-OutPos+1; DataSize64 *= increment; DataSize64 += DataPosFrac+FRACTIONMASK; DataSize64 >>= FRACTIONBITS; DataSize64 += BufferPadding+BufferPrePadding; DataSize64 *= NumChannels; BufferSize = (ALuint)mini64(DataSize64, BUFFERSIZE); BufferSize /= NumChannels; if(Source->SourceType == AL_STATIC) { const ALbuffer *ALBuffer = Source->queue->buffer; const ALubyte *Data = ALBuffer->data; ALuint DataSize; ALuint pos; /* If current pos is beyond the loop range, do not loop */ if(Looping == AL_FALSE || DataPosInt >= (ALuint)ALBuffer->LoopEnd) { Looping = AL_FALSE; if(DataPosInt >= BufferPrePadding) pos = DataPosInt - BufferPrePadding; else { DataSize = BufferPrePadding - DataPosInt; DataSize = minu(BufferSize, DataSize); SilenceStack(&SrcData[SrcDataSize*NumChannels], DataSize*NumChannels); SrcDataSize += DataSize; BufferSize -= DataSize; pos = 0; } /* Copy what's left to play in the source buffer, and clear the * rest of the temp buffer */ DataSize = ALBuffer->SampleLen - pos; DataSize = minu(BufferSize, DataSize); LoadStack(&SrcData[SrcDataSize*NumChannels], &Data[pos*FrameSize], ALBuffer->FmtType, DataSize*NumChannels); SrcDataSize += DataSize; BufferSize -= DataSize; SilenceStack(&SrcData[SrcDataSize*NumChannels], BufferSize*NumChannels); SrcDataSize += BufferSize; BufferSize -= BufferSize; } else { ALuint LoopStart = ALBuffer->LoopStart; ALuint LoopEnd = ALBuffer->LoopEnd; if(DataPosInt >= LoopStart) { pos = DataPosInt-LoopStart; while(pos < BufferPrePadding) pos += LoopEnd-LoopStart; pos -= BufferPrePadding; pos += LoopStart; } else if(DataPosInt >= BufferPrePadding) pos = DataPosInt - BufferPrePadding; else { DataSize = BufferPrePadding - DataPosInt; DataSize = minu(BufferSize, DataSize); SilenceStack(&SrcData[SrcDataSize*NumChannels], DataSize*NumChannels); SrcDataSize += DataSize; BufferSize -= DataSize; pos = 0; } /* Copy what's left of this loop iteration, then copy repeats * of the loop section */ DataSize = LoopEnd - pos; DataSize = minu(BufferSize, DataSize); LoadStack(&SrcData[SrcDataSize*NumChannels], &Data[pos*FrameSize], ALBuffer->FmtType, DataSize*NumChannels); SrcDataSize += DataSize; BufferSize -= DataSize; DataSize = LoopEnd-LoopStart; while(BufferSize > 0) { DataSize = minu(BufferSize, DataSize); LoadStack(&SrcData[SrcDataSize*NumChannels], &Data[LoopStart*FrameSize], ALBuffer->FmtType, DataSize*NumChannels); SrcDataSize += DataSize; BufferSize -= DataSize; } } } else { /* Crawl the buffer queue to fill in the temp buffer */ ALbufferlistitem *tmpiter = BufferListItem; ALuint pos; if(DataPosInt >= BufferPrePadding) pos = DataPosInt - BufferPrePadding; else { pos = BufferPrePadding - DataPosInt; while(pos > 0) { if(!tmpiter->prev && !Looping) { ALuint DataSize = minu(BufferSize, pos); SilenceStack(&SrcData[SrcDataSize*NumChannels], DataSize*NumChannels); SrcDataSize += DataSize; BufferSize -= DataSize; pos = 0; break; } if(tmpiter->prev) tmpiter = tmpiter->prev; else { while(tmpiter->next) tmpiter = tmpiter->next; } if(tmpiter->buffer) { if((ALuint)tmpiter->buffer->SampleLen > pos) { pos = tmpiter->buffer->SampleLen - pos; break; } pos -= tmpiter->buffer->SampleLen; } } } while(tmpiter && BufferSize > 0) { const ALbuffer *ALBuffer; if((ALBuffer=tmpiter->buffer) != NULL) { const ALubyte *Data = ALBuffer->data; ALuint DataSize = ALBuffer->SampleLen; /* Skip the data already played */ if(DataSize <= pos) pos -= DataSize; else { Data += pos*FrameSize; DataSize -= pos; pos -= pos; DataSize = minu(BufferSize, DataSize); LoadStack(&SrcData[SrcDataSize*NumChannels], Data, ALBuffer->FmtType, DataSize*NumChannels); SrcDataSize += DataSize; BufferSize -= DataSize; } } tmpiter = tmpiter->next; if(!tmpiter && Looping) tmpiter = Source->queue; else if(!tmpiter) { SilenceStack(&SrcData[SrcDataSize*NumChannels], BufferSize*NumChannels); SrcDataSize += BufferSize; BufferSize -= BufferSize; } } } /* Figure out how many samples we can mix. */ DataSize64 = SrcDataSize; DataSize64 -= BufferPadding+BufferPrePadding; DataSize64 <<= FRACTIONBITS; DataSize64 -= increment; DataSize64 -= DataPosFrac; BufferSize = (ALuint)((DataSize64+(increment-1)) / increment); BufferSize = minu(BufferSize, (SamplesToDo-OutPos)); /* Some mixers like having a multiple of 4, so try to give that unless * this is the last update. */ if(OutPos+BufferSize < SamplesToDo) BufferSize &= ~3; SrcData += BufferPrePadding*NumChannels; for(i = 0;i < NumChannels;i++) { ALfloat ResampledData[BUFFERSIZE]; Resample(Resampler, SrcData+i, DataPosFrac, increment, NumChannels, ResampledData, BufferSize); Source->Params.DryMix(Source, Device, &Source->Params.Direct, ResampledData, i, OutPos, SamplesToDo, BufferSize); for(j = 0;j < Device->NumAuxSends;j++) { if(!Source->Params.Send[j].Slot) continue; Source->Params.WetMix(&Source->Params.Send[j], ResampledData, i, OutPos, SamplesToDo, BufferSize); } } for(i = 0;i < BufferSize;i++) { DataPosFrac += increment; DataPosInt += DataPosFrac>>FRACTIONBITS; DataPosFrac &= FRACTIONMASK; OutPos++; } /* Handle looping sources */ while(1) { const ALbuffer *ALBuffer; ALuint DataSize = 0; ALuint LoopStart = 0; ALuint LoopEnd = 0; if((ALBuffer=BufferListItem->buffer) != NULL) { DataSize = ALBuffer->SampleLen; LoopStart = ALBuffer->LoopStart; LoopEnd = ALBuffer->LoopEnd; if(LoopEnd > DataPosInt) break; } if(Looping && Source->SourceType == AL_STATIC) { DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart; break; } if(DataSize > DataPosInt) break; if(BufferListItem->next) { BufferListItem = BufferListItem->next; BuffersPlayed++; } else if(Looping) { BufferListItem = Source->queue; BuffersPlayed = 0; } else { State = AL_STOPPED; BufferListItem = Source->queue; BuffersPlayed = Source->BuffersInQueue; DataPosInt = 0; DataPosFrac = 0; break; } DataPosInt -= DataSize; } } while(State == AL_PLAYING && OutPos < SamplesToDo); /* Update source info */ Source->state = State; Source->BuffersPlayed = BuffersPlayed; Source->position = DataPosInt; Source->position_fraction = DataPosFrac; Source->Hrtf.Offset += OutPos; if(State == AL_PLAYING) { Source->Hrtf.Counter = maxu(Source->Hrtf.Counter, OutPos) - OutPos; Source->Hrtf.Moving = AL_TRUE; } else { Source->Hrtf.Counter = 0; Source->Hrtf.Moving = AL_FALSE; } }