/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alSource.h" #include "alBuffer.h" #include "alListener.h" #include "alAuxEffectSlot.h" #include "alu.h" #include "mixer_defs.h" static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE, "MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!"); extern inline void InitiatePositionArrays(ALuint frac, ALint increment, ALuint *restrict frac_arr, ALint *restrict pos_arr, ALsizei size); alignas(16) ALfloat ResampleCoeffs_FIR4[FRACTIONONE][4]; enum Resampler { PointResampler, LinearResampler, FIR4Resampler, BSincResampler, ResamplerDefault = LinearResampler }; /* BSinc requires up to 11 extra samples before the current position, and 12 after. */ static_assert(MAX_PRE_SAMPLES >= 11, "MAX_PRE_SAMPLES must be at least 11!"); static_assert(MAX_POST_SAMPLES >= 12, "MAX_POST_SAMPLES must be at least 12!"); static MixerFunc MixSamples = Mix_C; static HrtfMixerFunc MixHrtfSamples = MixHrtf_C; static ResamplerFunc ResampleSamples = Resample_point32_C; MixerFunc SelectMixer(void) { #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Mix_SSE; #endif #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Mix_Neon; #endif return Mix_C; } RowMixerFunc SelectRowMixer(void) { #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixRow_SSE; #endif #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixRow_Neon; #endif return MixRow_C; } static inline HrtfMixerFunc SelectHrtfMixer(void) { #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtf_SSE; #endif #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtf_Neon; #endif return MixHrtf_C; } static inline ResamplerFunc SelectResampler(enum Resampler resampler) { switch(resampler) { case PointResampler: return Resample_point32_C; case LinearResampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_lerp32_Neon; #endif #ifdef HAVE_SSE4_1 if((CPUCapFlags&CPU_CAP_SSE4_1)) return Resample_lerp32_SSE41; #endif #ifdef HAVE_SSE2 if((CPUCapFlags&CPU_CAP_SSE2)) return Resample_lerp32_SSE2; #endif return Resample_lerp32_C; case FIR4Resampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_fir4_32_Neon; #endif #ifdef HAVE_SSE4_1 if((CPUCapFlags&CPU_CAP_SSE4_1)) return Resample_fir4_32_SSE41; #endif #ifdef HAVE_SSE3 if((CPUCapFlags&CPU_CAP_SSE3)) return Resample_fir4_32_SSE3; #endif return Resample_fir4_32_C; case BSincResampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_bsinc32_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Resample_bsinc32_SSE; #endif return Resample_bsinc32_C; } return Resample_point32_C; } /* The sinc resampler makes use of a Kaiser window to limit the needed sample * points to 4 and 8, respectively. */ #ifndef M_PI #define M_PI (3.14159265358979323846) #endif static inline double Sinc(double x) { if(x == 0.0) return 1.0; return sin(x*M_PI) / (x*M_PI); } /* The zero-order modified Bessel function of the first kind, used for the * Kaiser window. * * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) * = sum_{k=0}^inf ((x / 2)^k / k!)^2 */ static double BesselI_0(double x) { double term, sum, x2, y, last_sum; int k; /* Start at k=1 since k=0 is trivial. */ term = 1.0; sum = 1.0; x2 = x / 2.0; k = 1; /* Let the integration converge until the term of the sum is no longer * significant. */ do { y = x2 / k; k ++; last_sum = sum; term *= y * y; sum += term; } while(sum != last_sum); return sum; } /* Calculate a Kaiser window from the given beta value and a normalized k * [-1, 1]. * * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1 * { 0, elsewhere. * * Where k can be calculated as: * * k = i / l, where -l <= i <= l. * * or: * * k = 2 i / M - 1, where 0 <= i <= M. */ static inline double Kaiser(double b, double k) { if(k <= -1.0 || k >= 1.0) return 0.0; return BesselI_0(b * sqrt(1.0 - (k*k))) / BesselI_0(b); } static inline double CalcKaiserBeta(double rejection) { if(rejection > 50.0) return 0.1102 * (rejection - 8.7); if(rejection >= 21.0) return (0.5842 * pow(rejection - 21.0, 0.4)) + (0.07886 * (rejection - 21.0)); return 0.0; } static float SincKaiser(double r, double x) { /* Limit rippling to -60dB. */ return (float)(Kaiser(CalcKaiserBeta(60.0), x / r) * Sinc(x)); } void aluInitMixer(void) { enum Resampler resampler = ResamplerDefault; const char *str; ALuint i; if(ConfigValueStr(NULL, NULL, "resampler", &str)) { if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0) resampler = PointResampler; else if(strcasecmp(str, "linear") == 0) resampler = LinearResampler; else if(strcasecmp(str, "sinc4") == 0) resampler = FIR4Resampler; else if(strcasecmp(str, "bsinc") == 0) resampler = BSincResampler; else if(strcasecmp(str, "cubic") == 0 || strcasecmp(str, "sinc8") == 0) { WARN("Resampler option \"%s\" is deprecated, using sinc4\n", str); resampler = FIR4Resampler; } else { char *end; long n = strtol(str, &end, 0); if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler)) resampler = n; else WARN("Invalid resampler: %s\n", str); } } for(i = 0;i < FRACTIONONE;i++) { ALdouble mu = (ALdouble)i / FRACTIONONE; ResampleCoeffs_FIR4[i][0] = SincKaiser(2.0, mu - -1.0); ResampleCoeffs_FIR4[i][1] = SincKaiser(2.0, mu - 0.0); ResampleCoeffs_FIR4[i][2] = SincKaiser(2.0, mu - 1.0); ResampleCoeffs_FIR4[i][3] = SincKaiser(2.0, mu - 2.0); } MixHrtfSamples = SelectHrtfMixer(); MixSamples = SelectMixer(); ResampleSamples = SelectResampler(resampler); } static inline ALfloat Sample_ALbyte(ALbyte val) { return val * (1.0f/127.0f); } static inline ALfloat Sample_ALshort(ALshort val) { return val * (1.0f/32767.0f); } static inline ALfloat Sample_ALfloat(ALfloat val) { return val; } #define DECL_TEMPLATE(T) \ static inline void Load_##T(ALfloat *dst, const T *src, ALint srcstep, ALsizei samples)\ { \ ALsizei i; \ for(i = 0;i < samples;i++) \ dst[i] = Sample_##T(src[i*srcstep]); \ } DECL_TEMPLATE(ALbyte) DECL_TEMPLATE(ALshort) DECL_TEMPLATE(ALfloat) #undef DECL_TEMPLATE static void LoadSamples(ALfloat *dst, const ALvoid *src, ALint srcstep, enum FmtType srctype, ALsizei samples) { switch(srctype) { case FmtByte: Load_ALbyte(dst, src, srcstep, samples); break; case FmtShort: Load_ALshort(dst, src, srcstep, samples); break; case FmtFloat: Load_ALfloat(dst, src, srcstep, samples); break; } } static inline void SilenceSamples(ALfloat *dst, ALsizei samples) { ALsizei i; for(i = 0;i < samples;i++) dst[i] = 0.0f; } static const ALfloat *DoFilters(ALfilterState *lpfilter, ALfilterState *hpfilter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples, enum ActiveFilters type) { ALsizei i; switch(type) { case AF_None: ALfilterState_processPassthru(lpfilter, src, numsamples); ALfilterState_processPassthru(hpfilter, src, numsamples); break; case AF_LowPass: ALfilterState_process(lpfilter, dst, src, numsamples); ALfilterState_processPassthru(hpfilter, dst, numsamples); return dst; case AF_HighPass: ALfilterState_processPassthru(lpfilter, src, numsamples); ALfilterState_process(hpfilter, dst, src, numsamples); return dst; case AF_BandPass: for(i = 0;i < numsamples;) { ALfloat temp[256]; ALsizei todo = mini(256, numsamples-i); ALfilterState_process(lpfilter, temp, src+i, todo); ALfilterState_process(hpfilter, dst+i, temp, todo); i += todo; } return dst; } return src; } ALboolean MixSource(ALvoice *voice, ALsource *Source, ALCdevice *Device, ALsizei SamplesToDo) { ResamplerFunc Resample; ALbufferlistitem *BufferListItem; ALuint DataPosInt, DataPosFrac; ALboolean Looping; ALint increment; ALenum State; ALsizei OutPos; ALsizei NumChannels; ALsizei SampleSize; ALint64 DataSize64; ALsizei Counter; ALsizei IrSize; ALsizei chan, j; ALsizei send; /* Get source info */ State = AL_PLAYING; /* Only called while playing. */ DataPosInt = ATOMIC_LOAD(&voice->position, almemory_order_acquire); DataPosFrac = ATOMIC_LOAD(&voice->position_fraction, almemory_order_relaxed); BufferListItem = ATOMIC_LOAD(&voice->current_buffer, almemory_order_relaxed); Looping = ATOMIC_LOAD(&Source->looping, almemory_order_relaxed); NumChannels = voice->NumChannels; SampleSize = voice->SampleSize; increment = voice->Step; IrSize = (Device->HrtfHandle ? Device->HrtfHandle->irSize : 0); Resample = ((increment == FRACTIONONE && DataPosFrac == 0) ? Resample_copy32_C : ResampleSamples); Counter = voice->Moving ? SamplesToDo : 0; OutPos = 0; do { ALsizei SrcBufferSize, DstBufferSize; /* Figure out how many buffer samples will be needed */ DataSize64 = SamplesToDo-OutPos; DataSize64 *= increment; DataSize64 += DataPosFrac+FRACTIONMASK; DataSize64 >>= FRACTIONBITS; DataSize64 += MAX_POST_SAMPLES+MAX_PRE_SAMPLES; SrcBufferSize = (ALsizei)mini64(DataSize64, BUFFERSIZE); /* Figure out how many samples we can actually mix from this. */ DataSize64 = SrcBufferSize; DataSize64 -= MAX_POST_SAMPLES+MAX_PRE_SAMPLES; DataSize64 <<= FRACTIONBITS; DataSize64 -= DataPosFrac; DstBufferSize = (ALsizei)((DataSize64+(increment-1)) / increment); DstBufferSize = mini(DstBufferSize, (SamplesToDo-OutPos)); /* Some mixers like having a multiple of 4, so try to give that unless * this is the last update. */ if(OutPos+DstBufferSize < SamplesToDo) DstBufferSize &= ~3; for(chan = 0;chan < NumChannels;chan++) { const ALfloat *ResampledData; ALfloat *SrcData = Device->SourceData; ALsizei SrcDataSize; /* Load the previous samples into the source data first. */ memcpy(SrcData, voice->PrevSamples[chan], MAX_PRE_SAMPLES*sizeof(ALfloat)); SrcDataSize = MAX_PRE_SAMPLES; if(Source->SourceType == AL_STATIC) { const ALbuffer *ALBuffer = BufferListItem->buffer; const ALubyte *Data = ALBuffer->data; ALsizei DataSize; /* Offset buffer data to current channel */ Data += chan*SampleSize; /* If current pos is beyond the loop range, do not loop */ if(Looping == AL_FALSE || DataPosInt >= (ALuint)ALBuffer->LoopEnd) { Looping = AL_FALSE; /* Load what's left to play from the source buffer, and * clear the rest of the temp buffer */ DataSize = minu(SrcBufferSize - SrcDataSize, ALBuffer->SampleLen - DataPosInt); LoadSamples(&SrcData[SrcDataSize], &Data[DataPosInt * NumChannels*SampleSize], NumChannels, ALBuffer->FmtType, DataSize); SrcDataSize += DataSize; SilenceSamples(&SrcData[SrcDataSize], SrcBufferSize - SrcDataSize); SrcDataSize += SrcBufferSize - SrcDataSize; } else { ALsizei LoopStart = ALBuffer->LoopStart; ALsizei LoopEnd = ALBuffer->LoopEnd; /* Load what's left of this loop iteration, then load * repeats of the loop section */ DataSize = minu(SrcBufferSize - SrcDataSize, LoopEnd - DataPosInt); LoadSamples(&SrcData[SrcDataSize], &Data[DataPosInt * NumChannels*SampleSize], NumChannels, ALBuffer->FmtType, DataSize); SrcDataSize += DataSize; DataSize = LoopEnd-LoopStart; while(SrcBufferSize > SrcDataSize) { DataSize = mini(SrcBufferSize - SrcDataSize, DataSize); LoadSamples(&SrcData[SrcDataSize], &Data[LoopStart * NumChannels*SampleSize], NumChannels, ALBuffer->FmtType, DataSize); SrcDataSize += DataSize; } } } else { /* Crawl the buffer queue to fill in the temp buffer */ ALbufferlistitem *tmpiter = BufferListItem; ALuint pos = DataPosInt; while(tmpiter && SrcBufferSize > SrcDataSize) { const ALbuffer *ALBuffer; if((ALBuffer=tmpiter->buffer) != NULL) { const ALubyte *Data = ALBuffer->data; ALuint DataSize = ALBuffer->SampleLen; /* Skip the data already played */ if(DataSize <= pos) pos -= DataSize; else { Data += (pos*NumChannels + chan)*SampleSize; DataSize -= pos; pos -= pos; DataSize = minu(SrcBufferSize - SrcDataSize, DataSize); LoadSamples(&SrcData[SrcDataSize], Data, NumChannels, ALBuffer->FmtType, DataSize); SrcDataSize += DataSize; } } tmpiter = tmpiter->next; if(!tmpiter && Looping) tmpiter = ATOMIC_LOAD(&Source->queue, almemory_order_acquire); else if(!tmpiter) { SilenceSamples(&SrcData[SrcDataSize], SrcBufferSize - SrcDataSize); SrcDataSize += SrcBufferSize - SrcDataSize; } } } /* Store the last source samples used for next time. */ memcpy(voice->PrevSamples[chan], &SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS], MAX_PRE_SAMPLES*sizeof(ALfloat) ); /* Now resample, then filter and mix to the appropriate outputs. */ ResampledData = Resample(&voice->ResampleState, &SrcData[MAX_PRE_SAMPLES], DataPosFrac, increment, Device->ResampledData, DstBufferSize ); { DirectParams *parms = &voice->Direct.Params[chan]; const ALfloat *samples; samples = DoFilters( &parms->LowPass, &parms->HighPass, Device->FilteredData, ResampledData, DstBufferSize, parms->FilterType ); if(!(voice->Flags&VOICE_IS_HRTF)) { if(!Counter) memcpy(parms->Gains.Current, parms->Gains.Target, sizeof(parms->Gains.Current)); if(!(voice->Flags&VOICE_HAS_NFC)) MixSamples(samples, voice->Direct.Channels, voice->Direct.Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); else { ALfloat *nfcsamples = Device->NFCtrlData; ALsizei chanoffset = 0; MixSamples(samples, voice->Direct.ChannelsPerOrder[0], voice->Direct.Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); chanoffset += voice->Direct.ChannelsPerOrder[0]; if(voice->Direct.ChannelsPerOrder[1] > 0) { NfcFilterUpdate1(&parms->NFCtrlFilter[0], nfcsamples, samples, DstBufferSize); MixSamples(nfcsamples, voice->Direct.ChannelsPerOrder[1], voice->Direct.Buffer+chanoffset, parms->Gains.Current+chanoffset, parms->Gains.Target+chanoffset, Counter, OutPos, DstBufferSize ); chanoffset += voice->Direct.ChannelsPerOrder[1]; } if(voice->Direct.ChannelsPerOrder[2] > 0) { NfcFilterUpdate2(&parms->NFCtrlFilter[1], nfcsamples, samples, DstBufferSize); MixSamples(nfcsamples, voice->Direct.ChannelsPerOrder[2], voice->Direct.Buffer+chanoffset, parms->Gains.Current+chanoffset, parms->Gains.Target+chanoffset, Counter, OutPos, DstBufferSize ); chanoffset += voice->Direct.ChannelsPerOrder[2]; } if(voice->Direct.ChannelsPerOrder[3] > 0) { NfcFilterUpdate3(&parms->NFCtrlFilter[2], nfcsamples, samples, DstBufferSize); MixSamples(nfcsamples, voice->Direct.ChannelsPerOrder[3], voice->Direct.Buffer+chanoffset, parms->Gains.Current+chanoffset, parms->Gains.Target+chanoffset, Counter, OutPos, DstBufferSize ); chanoffset += voice->Direct.ChannelsPerOrder[3]; } } } else { MixHrtfParams hrtfparams; int lidx, ridx; if(!Counter) { parms->Hrtf.Current = parms->Hrtf.Target; for(j = 0;j < HRIR_LENGTH;j++) { hrtfparams.Steps.Coeffs[j][0] = 0.0f; hrtfparams.Steps.Coeffs[j][1] = 0.0f; } hrtfparams.Steps.Delay[0] = 0; hrtfparams.Steps.Delay[1] = 0; } else { ALfloat delta = 1.0f / (ALfloat)Counter; ALfloat coeffdiff; ALint delaydiff; for(j = 0;j < IrSize;j++) { coeffdiff = parms->Hrtf.Target.Coeffs[j][0] - parms->Hrtf.Current.Coeffs[j][0]; hrtfparams.Steps.Coeffs[j][0] = coeffdiff * delta; coeffdiff = parms->Hrtf.Target.Coeffs[j][1] - parms->Hrtf.Current.Coeffs[j][1]; hrtfparams.Steps.Coeffs[j][1] = coeffdiff * delta; } delaydiff = parms->Hrtf.Target.Delay[0] - parms->Hrtf.Current.Delay[0]; hrtfparams.Steps.Delay[0] = fastf2i((ALfloat)delaydiff * delta); delaydiff = parms->Hrtf.Target.Delay[1] - parms->Hrtf.Current.Delay[1]; hrtfparams.Steps.Delay[1] = fastf2i((ALfloat)delaydiff * delta); } hrtfparams.Target = &parms->Hrtf.Target; hrtfparams.Current = &parms->Hrtf.Current; lidx = GetChannelIdxByName(Device->RealOut, FrontLeft); ridx = GetChannelIdxByName(Device->RealOut, FrontRight); assert(lidx != -1 && ridx != -1); MixHrtfSamples( voice->Direct.Buffer[lidx], voice->Direct.Buffer[ridx], samples, Counter, voice->Offset, OutPos, IrSize, &hrtfparams, &parms->Hrtf.State, DstBufferSize ); } } for(send = 0;send < Device->NumAuxSends;send++) { SendParams *parms = &voice->Send[send].Params[chan]; const ALfloat *samples; if(!voice->Send[send].Buffer) continue; samples = DoFilters( &parms->LowPass, &parms->HighPass, Device->FilteredData, ResampledData, DstBufferSize, parms->FilterType ); if(!Counter) memcpy(parms->Gains.Current, parms->Gains.Target, sizeof(parms->Gains.Current)); MixSamples(samples, voice->Send[send].Channels, voice->Send[send].Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); } } /* Update positions */ DataPosFrac += increment*DstBufferSize; DataPosInt += DataPosFrac>>FRACTIONBITS; DataPosFrac &= FRACTIONMASK; OutPos += DstBufferSize; voice->Offset += DstBufferSize; Counter = maxi(DstBufferSize, Counter) - DstBufferSize; /* Handle looping sources */ while(1) { const ALbuffer *ALBuffer; ALsizei DataSize = 0; ALsizei LoopStart = 0; ALsizei LoopEnd = 0; if((ALBuffer=BufferListItem->buffer) != NULL) { DataSize = ALBuffer->SampleLen; LoopStart = ALBuffer->LoopStart; LoopEnd = ALBuffer->LoopEnd; if((ALuint)LoopEnd > DataPosInt) break; } if(Looping && Source->SourceType == AL_STATIC) { assert(LoopEnd > LoopStart); DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart; break; } if((ALuint)DataSize > DataPosInt) break; if(!(BufferListItem=BufferListItem->next)) { if(Looping) BufferListItem = ATOMIC_LOAD(&Source->queue, almemory_order_acquire); else { State = AL_STOPPED; BufferListItem = NULL; DataPosInt = 0; DataPosFrac = 0; break; } } DataPosInt -= DataSize; } } while(State == AL_PLAYING && OutPos < SamplesToDo); voice->Moving = AL_TRUE; /* Update source info */ ATOMIC_STORE(&voice->position, DataPosInt, almemory_order_relaxed); ATOMIC_STORE(&voice->position_fraction, DataPosFrac, almemory_order_relaxed); ATOMIC_STORE(&voice->current_buffer, BufferListItem, almemory_order_release); return State == AL_PLAYING; }