/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alSource.h" #include "alBuffer.h" #include "alListener.h" #include "alAuxEffectSlot.h" #include "sample_cvt.h" #include "alu.h" #include "alconfig.h" #include "ringbuffer.h" #include "cpu_caps.h" #include "mixer_defs.h" static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE, "MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!"); extern inline void InitiatePositionArrays(ALsizei frac, ALint increment, ALsizei *restrict frac_arr, ALint *restrict pos_arr, ALsizei size); /* BSinc24 requires up to 23 extra samples before the current position, and 24 after. */ static_assert(MAX_RESAMPLE_PADDING >= 24, "MAX_RESAMPLE_PADDING must be at least 24!"); enum Resampler ResamplerDefault = LinearResampler; MixerFunc MixSamples = Mix_C; RowMixerFunc MixRowSamples = MixRow_C; static HrtfMixerFunc MixHrtfSamples = MixHrtf_C; static HrtfMixerBlendFunc MixHrtfBlendSamples = MixHrtfBlend_C; static MixerFunc SelectMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Mix_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Mix_SSE; #endif return Mix_C; } static RowMixerFunc SelectRowMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixRow_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixRow_SSE; #endif return MixRow_C; } static inline HrtfMixerFunc SelectHrtfMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtf_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtf_SSE; #endif return MixHrtf_C; } static inline HrtfMixerBlendFunc SelectHrtfBlendMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtfBlend_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtfBlend_SSE; #endif return MixHrtfBlend_C; } ResamplerFunc SelectResampler(enum Resampler resampler) { switch(resampler) { case PointResampler: return Resample_point_C; case LinearResampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_lerp_Neon; #endif #ifdef HAVE_SSE4_1 if((CPUCapFlags&CPU_CAP_SSE4_1)) return Resample_lerp_SSE41; #endif #ifdef HAVE_SSE2 if((CPUCapFlags&CPU_CAP_SSE2)) return Resample_lerp_SSE2; #endif return Resample_lerp_C; case FIR4Resampler: return Resample_cubic_C; case BSinc12Resampler: case BSinc24Resampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_bsinc_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Resample_bsinc_SSE; #endif return Resample_bsinc_C; } return Resample_point_C; } void aluInitMixer(void) { const char *str; if(ConfigValueStr(NULL, NULL, "resampler", &str)) { if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0) ResamplerDefault = PointResampler; else if(strcasecmp(str, "linear") == 0) ResamplerDefault = LinearResampler; else if(strcasecmp(str, "cubic") == 0) ResamplerDefault = FIR4Resampler; else if(strcasecmp(str, "bsinc12") == 0) ResamplerDefault = BSinc12Resampler; else if(strcasecmp(str, "bsinc24") == 0) ResamplerDefault = BSinc24Resampler; else if(strcasecmp(str, "bsinc") == 0) { WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str); ResamplerDefault = BSinc12Resampler; } else if(strcasecmp(str, "sinc4") == 0 || strcasecmp(str, "sinc8") == 0) { WARN("Resampler option \"%s\" is deprecated, using cubic\n", str); ResamplerDefault = FIR4Resampler; } else { char *end; long n = strtol(str, &end, 0); if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler)) ResamplerDefault = n; else WARN("Invalid resampler: %s\n", str); } } MixHrtfBlendSamples = SelectHrtfBlendMixer(); MixHrtfSamples = SelectHrtfMixer(); MixSamples = SelectMixer(); MixRowSamples = SelectRowMixer(); } static void SendAsyncEvent(ALCcontext *context, ALuint enumtype, ALenum type, ALuint objid, ALuint param, const char *msg) { AsyncEvent evt; evt.EnumType = enumtype; evt.Type = type; evt.ObjectId = objid; evt.Param = param; strcpy(evt.Message, msg); if(ll_ringbuffer_write_space(context->AsyncEvents) > 0) ll_ringbuffer_write(context->AsyncEvents, (const char*)&evt, 1); } static inline ALfloat Sample_ALubyte(ALubyte val) { return (val-128) * (1.0f/128.0f); } static inline ALfloat Sample_ALshort(ALshort val) { return val * (1.0f/32768.0f); } static inline ALfloat Sample_ALfloat(ALfloat val) { return val; } static inline ALfloat Sample_ALdouble(ALdouble val) { return (ALfloat)val; } typedef ALubyte ALmulaw; static inline ALfloat Sample_ALmulaw(ALmulaw val) { return muLawDecompressionTable[val] * (1.0f/32768.0f); } typedef ALubyte ALalaw; static inline ALfloat Sample_ALalaw(ALalaw val) { return aLawDecompressionTable[val] * (1.0f/32768.0f); } #define DECL_TEMPLATE(T) \ static inline void Load_##T(ALfloat *restrict dst, const T *restrict src, \ ALint srcstep, ALsizei samples) \ { \ ALsizei i; \ for(i = 0;i < samples;i++) \ dst[i] += Sample_##T(src[i*srcstep]); \ } DECL_TEMPLATE(ALubyte) DECL_TEMPLATE(ALshort) DECL_TEMPLATE(ALfloat) DECL_TEMPLATE(ALdouble) DECL_TEMPLATE(ALmulaw) DECL_TEMPLATE(ALalaw) #undef DECL_TEMPLATE static void LoadSamples(ALfloat *restrict dst, const ALvoid *restrict src, ALint srcstep, enum FmtType srctype, ALsizei samples) { #define HANDLE_FMT(ET, ST) case ET: Load_##ST(dst, src, srcstep, samples); break switch(srctype) { HANDLE_FMT(FmtUByte, ALubyte); HANDLE_FMT(FmtShort, ALshort); HANDLE_FMT(FmtFloat, ALfloat); HANDLE_FMT(FmtDouble, ALdouble); HANDLE_FMT(FmtMulaw, ALmulaw); HANDLE_FMT(FmtAlaw, ALalaw); } #undef HANDLE_FMT } static const ALfloat *DoFilters(ALfilterState *lpfilter, ALfilterState *hpfilter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples, enum ActiveFilters type) { ALsizei i; switch(type) { case AF_None: ALfilterState_processPassthru(lpfilter, src, numsamples); ALfilterState_processPassthru(hpfilter, src, numsamples); break; case AF_LowPass: ALfilterState_process(lpfilter, dst, src, numsamples); ALfilterState_processPassthru(hpfilter, dst, numsamples); return dst; case AF_HighPass: ALfilterState_processPassthru(lpfilter, src, numsamples); ALfilterState_process(hpfilter, dst, src, numsamples); return dst; case AF_BandPass: for(i = 0;i < numsamples;) { ALfloat temp[256]; ALsizei todo = mini(256, numsamples-i); ALfilterState_process(lpfilter, temp, src+i, todo); ALfilterState_process(hpfilter, dst+i, temp, todo); i += todo; } return dst; } return src; } /* This function uses these device temp buffers. */ #define SOURCE_DATA_BUF 0 #define RESAMPLED_BUF 1 #define FILTERED_BUF 2 #define NFC_DATA_BUF 3 ALboolean MixSource(ALvoice *voice, ALuint SourceID, ALCcontext *Context, ALsizei SamplesToDo) { ALCdevice *Device = Context->Device; ALbufferlistitem *BufferListItem; ALbufferlistitem *BufferLoopItem; ALsizei NumChannels, SampleSize; ALbitfieldSOFT enabledevt; ALsizei buffers_done = 0; ResamplerFunc Resample; ALsizei DataPosInt; ALsizei DataPosFrac; ALint64 DataSize64; ALint increment; ALsizei Counter; ALsizei OutPos; ALsizei IrSize; bool isplaying; bool firstpass; bool isstatic; ALsizei chan; ALsizei send; /* Get source info */ isplaying = true; /* Will only be called while playing. */ isstatic = !!(voice->Flags&VOICE_IS_STATIC); DataPosInt = ATOMIC_LOAD(&voice->position, almemory_order_acquire); DataPosFrac = ATOMIC_LOAD(&voice->position_fraction, almemory_order_relaxed); BufferListItem = ATOMIC_LOAD(&voice->current_buffer, almemory_order_relaxed); BufferLoopItem = ATOMIC_LOAD(&voice->loop_buffer, almemory_order_relaxed); NumChannels = voice->NumChannels; SampleSize = voice->SampleSize; increment = voice->Step; IrSize = (Device->HrtfHandle ? Device->HrtfHandle->irSize : 0); Resample = ((increment == FRACTIONONE && DataPosFrac == 0) ? Resample_copy_C : voice->Resampler); Counter = (voice->Flags&VOICE_IS_FADING) ? SamplesToDo : 0; firstpass = true; OutPos = 0; do { ALsizei SrcBufferSize, DstBufferSize; /* Figure out how many buffer samples will be needed */ DataSize64 = SamplesToDo-OutPos; DataSize64 *= increment; DataSize64 += DataPosFrac+FRACTIONMASK; DataSize64 >>= FRACTIONBITS; DataSize64 += MAX_RESAMPLE_PADDING*2; SrcBufferSize = (ALsizei)mini64(DataSize64, BUFFERSIZE); /* Figure out how many samples we can actually mix from this. */ DataSize64 = SrcBufferSize; DataSize64 -= MAX_RESAMPLE_PADDING*2; DataSize64 <<= FRACTIONBITS; DataSize64 -= DataPosFrac; DstBufferSize = (ALsizei)mini64((DataSize64+(increment-1)) / increment, SamplesToDo - OutPos); /* Some mixers like having a multiple of 4, so try to give that unless * this is the last update. */ if(DstBufferSize < SamplesToDo-OutPos) DstBufferSize &= ~3; /* It's impossible to have a buffer list item with no entries. */ assert(BufferListItem->num_buffers > 0); for(chan = 0;chan < NumChannels;chan++) { const ALfloat *ResampledData; ALfloat *SrcData = Device->TempBuffer[SOURCE_DATA_BUF]; ALsizei FilledAmt; /* Load the previous samples into the source data first, and clear the rest. */ memcpy(SrcData, voice->PrevSamples[chan], MAX_RESAMPLE_PADDING*sizeof(ALfloat)); memset(SrcData+MAX_RESAMPLE_PADDING, 0, (BUFFERSIZE-MAX_RESAMPLE_PADDING)* sizeof(ALfloat)); FilledAmt = MAX_RESAMPLE_PADDING; if(isstatic) { /* TODO: For static sources, loop points are taken from the * first buffer (should be adjusted by any buffer offset, to * possibly be added later). */ const ALbuffer *Buffer0 = BufferListItem->buffers[0]; const ALsizei LoopStart = Buffer0->LoopStart; const ALsizei LoopEnd = Buffer0->LoopEnd; const ALsizei LoopSize = LoopEnd - LoopStart; /* If current pos is beyond the loop range, do not loop */ if(!BufferLoopItem || DataPosInt >= LoopEnd) { ALsizei SizeToDo = SrcBufferSize - FilledAmt; ALsizei CompLen = 0; ALsizei i; BufferLoopItem = NULL; for(i = 0;i < BufferListItem->num_buffers;i++) { const ALbuffer *buffer = BufferListItem->buffers[i]; const ALubyte *Data = buffer->data; ALsizei DataSize; if(DataPosInt >= buffer->SampleLen) continue; /* Load what's left to play from the buffer */ DataSize = mini(SizeToDo, buffer->SampleLen - DataPosInt); CompLen = maxi(CompLen, DataSize); LoadSamples(&SrcData[FilledAmt], &Data[(DataPosInt*NumChannels + chan)*SampleSize], NumChannels, buffer->FmtType, DataSize ); } FilledAmt += CompLen; } else { ALsizei SizeToDo = mini(SrcBufferSize - FilledAmt, LoopEnd - DataPosInt); ALsizei CompLen = 0; ALsizei i; for(i = 0;i < BufferListItem->num_buffers;i++) { const ALbuffer *buffer = BufferListItem->buffers[i]; const ALubyte *Data = buffer->data; ALsizei DataSize; if(DataPosInt >= buffer->SampleLen) continue; /* Load what's left of this loop iteration */ DataSize = mini(SizeToDo, buffer->SampleLen - DataPosInt); CompLen = maxi(CompLen, DataSize); LoadSamples(&SrcData[FilledAmt], &Data[(DataPosInt*NumChannels + chan)*SampleSize], NumChannels, buffer->FmtType, DataSize ); } FilledAmt += CompLen; while(SrcBufferSize > FilledAmt) { const ALsizei SizeToDo = mini(SrcBufferSize - FilledAmt, LoopSize); CompLen = 0; for(i = 0;i < BufferListItem->num_buffers;i++) { const ALbuffer *buffer = BufferListItem->buffers[i]; const ALubyte *Data = buffer->data; ALsizei DataSize; if(LoopStart >= buffer->SampleLen) continue; DataSize = mini(SizeToDo, buffer->SampleLen - LoopStart); CompLen = maxi(CompLen, DataSize); LoadSamples(&SrcData[FilledAmt], &Data[(LoopStart*NumChannels + chan)*SampleSize], NumChannels, buffer->FmtType, DataSize ); } FilledAmt += CompLen; } } } else { /* Crawl the buffer queue to fill in the temp buffer */ ALbufferlistitem *tmpiter = BufferListItem; ALsizei pos = DataPosInt; while(tmpiter && SrcBufferSize > FilledAmt) { ALsizei SizeToDo = SrcBufferSize - FilledAmt; ALsizei CompLen = 0; ALsizei i; for(i = 0;i < tmpiter->num_buffers;i++) { const ALbuffer *ALBuffer = tmpiter->buffers[i]; ALsizei DataSize = ALBuffer ? ALBuffer->SampleLen : 0; CompLen = maxi(CompLen, DataSize); if(DataSize > pos) { const ALubyte *Data = ALBuffer->data; Data += (pos*NumChannels + chan)*SampleSize; DataSize = minu(SizeToDo, DataSize - pos); LoadSamples(&SrcData[FilledAmt], Data, NumChannels, ALBuffer->FmtType, DataSize); } } if(pos > CompLen) pos -= CompLen; else { FilledAmt += CompLen - pos; pos = 0; } if(SrcBufferSize > FilledAmt) { tmpiter = ATOMIC_LOAD(&tmpiter->next, almemory_order_acquire); if(!tmpiter) tmpiter = BufferLoopItem; } } } /* Store the last source samples used for next time. */ memcpy(voice->PrevSamples[chan], &SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS], MAX_RESAMPLE_PADDING*sizeof(ALfloat) ); /* Now resample, then filter and mix to the appropriate outputs. */ ResampledData = Resample(&voice->ResampleState, &SrcData[MAX_RESAMPLE_PADDING], DataPosFrac, increment, Device->TempBuffer[RESAMPLED_BUF], DstBufferSize ); { DirectParams *parms = &voice->Direct.Params[chan]; const ALfloat *samples; samples = DoFilters( &parms->LowPass, &parms->HighPass, Device->TempBuffer[FILTERED_BUF], ResampledData, DstBufferSize, voice->Direct.FilterType ); if(!(voice->Flags&VOICE_HAS_HRTF)) { if(!Counter) memcpy(parms->Gains.Current, parms->Gains.Target, sizeof(parms->Gains.Current)); if(!(voice->Flags&VOICE_HAS_NFC)) MixSamples(samples, voice->Direct.Channels, voice->Direct.Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); else { ALfloat *nfcsamples = Device->TempBuffer[NFC_DATA_BUF]; ALsizei chanoffset = 0; MixSamples(samples, voice->Direct.ChannelsPerOrder[0], voice->Direct.Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); chanoffset += voice->Direct.ChannelsPerOrder[0]; #define APPLY_NFC_MIX(order) \ if(voice->Direct.ChannelsPerOrder[order] > 0) \ { \ NfcFilterUpdate##order(&parms->NFCtrlFilter, nfcsamples, samples, \ DstBufferSize); \ MixSamples(nfcsamples, voice->Direct.ChannelsPerOrder[order], \ voice->Direct.Buffer+chanoffset, parms->Gains.Current+chanoffset, \ parms->Gains.Target+chanoffset, Counter, OutPos, DstBufferSize \ ); \ chanoffset += voice->Direct.ChannelsPerOrder[order]; \ } APPLY_NFC_MIX(1) APPLY_NFC_MIX(2) APPLY_NFC_MIX(3) #undef APPLY_NFC_MIX } } else { MixHrtfParams hrtfparams; ALsizei fademix = 0; int lidx, ridx; lidx = GetChannelIdxByName(&Device->RealOut, FrontLeft); ridx = GetChannelIdxByName(&Device->RealOut, FrontRight); assert(lidx != -1 && ridx != -1); if(!Counter) { /* No fading, just overwrite the old HRTF params. */ parms->Hrtf.Old = parms->Hrtf.Target; } else if(!(parms->Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD)) { /* The old HRTF params are silent, so overwrite the old * coefficients with the new, and reset the old gain to * 0. The future mix will then fade from silence. */ parms->Hrtf.Old = parms->Hrtf.Target; parms->Hrtf.Old.Gain = 0.0f; } else if(firstpass) { ALfloat gain; /* Fade between the coefficients over 128 samples. */ fademix = mini(DstBufferSize, 128); /* The new coefficients need to fade in completely * since they're replacing the old ones. To keep the * gain fading consistent, interpolate between the old * and new target gains given how much of the fade time * this mix handles. */ gain = lerp(parms->Hrtf.Old.Gain, parms->Hrtf.Target.Gain, minf(1.0f, (ALfloat)fademix/Counter)); hrtfparams.Coeffs = parms->Hrtf.Target.Coeffs; hrtfparams.Delay[0] = parms->Hrtf.Target.Delay[0]; hrtfparams.Delay[1] = parms->Hrtf.Target.Delay[1]; hrtfparams.Gain = 0.0f; hrtfparams.GainStep = gain / (ALfloat)fademix; MixHrtfBlendSamples( voice->Direct.Buffer[lidx], voice->Direct.Buffer[ridx], samples, voice->Offset, OutPos, IrSize, &parms->Hrtf.Old, &hrtfparams, &parms->Hrtf.State, fademix ); /* Update the old parameters with the result. */ parms->Hrtf.Old = parms->Hrtf.Target; if(fademix < Counter) parms->Hrtf.Old.Gain = hrtfparams.Gain; } if(fademix < DstBufferSize) { ALsizei todo = DstBufferSize - fademix; ALfloat gain = parms->Hrtf.Target.Gain; /* Interpolate the target gain if the gain fading lasts * longer than this mix. */ if(Counter > DstBufferSize) gain = lerp(parms->Hrtf.Old.Gain, gain, (ALfloat)todo/(Counter-fademix)); hrtfparams.Coeffs = parms->Hrtf.Target.Coeffs; hrtfparams.Delay[0] = parms->Hrtf.Target.Delay[0]; hrtfparams.Delay[1] = parms->Hrtf.Target.Delay[1]; hrtfparams.Gain = parms->Hrtf.Old.Gain; hrtfparams.GainStep = (gain - parms->Hrtf.Old.Gain) / (ALfloat)todo; MixHrtfSamples( voice->Direct.Buffer[lidx], voice->Direct.Buffer[ridx], samples+fademix, voice->Offset+fademix, OutPos+fademix, IrSize, &hrtfparams, &parms->Hrtf.State, todo ); /* Store the interpolated gain or the final target gain * depending if the fade is done. */ if(DstBufferSize < Counter) parms->Hrtf.Old.Gain = gain; else parms->Hrtf.Old.Gain = parms->Hrtf.Target.Gain; } } } for(send = 0;send < Device->NumAuxSends;send++) { SendParams *parms = &voice->Send[send].Params[chan]; const ALfloat *samples; if(!voice->Send[send].Buffer) continue; samples = DoFilters( &parms->LowPass, &parms->HighPass, Device->TempBuffer[FILTERED_BUF], ResampledData, DstBufferSize, voice->Send[send].FilterType ); if(!Counter) memcpy(parms->Gains.Current, parms->Gains.Target, sizeof(parms->Gains.Current)); MixSamples(samples, voice->Send[send].Channels, voice->Send[send].Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); } } /* Update positions */ DataPosFrac += increment*DstBufferSize; DataPosInt += DataPosFrac>>FRACTIONBITS; DataPosFrac &= FRACTIONMASK; OutPos += DstBufferSize; voice->Offset += DstBufferSize; Counter = maxi(DstBufferSize, Counter) - DstBufferSize; firstpass = false; if(isstatic) { if(BufferLoopItem) { /* Handle looping static source */ const ALbuffer *Buffer = BufferListItem->buffers[0]; ALsizei LoopStart = Buffer->LoopStart; ALsizei LoopEnd = Buffer->LoopEnd; if(DataPosInt >= LoopEnd) { assert(LoopEnd > LoopStart); DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart; } } else { /* Handle non-looping static source */ ALsizei CompLen = 0; ALsizei i; for(i = 0;i < BufferListItem->num_buffers;i++) { const ALbuffer *buffer = BufferListItem->buffers[i]; if(buffer) CompLen = maxi(CompLen, buffer->SampleLen); } if(DataPosInt >= CompLen) { isplaying = false; BufferListItem = NULL; DataPosInt = 0; DataPosFrac = 0; break; } } } else while(1) { /* Handle streaming source */ ALsizei CompLen = 0; ALsizei i; for(i = 0;i < BufferListItem->num_buffers;i++) { const ALbuffer *buffer = BufferListItem->buffers[i]; if(buffer) CompLen = maxi(CompLen, buffer->SampleLen); } if(CompLen > DataPosInt) break; buffers_done += BufferListItem->num_buffers; BufferListItem = ATOMIC_LOAD(&BufferListItem->next, almemory_order_acquire); if(!BufferListItem && !(BufferListItem=BufferLoopItem)) { isplaying = false; DataPosInt = 0; DataPosFrac = 0; break; } DataPosInt -= CompLen; } } while(isplaying && OutPos < SamplesToDo); voice->Flags |= VOICE_IS_FADING; /* Update source info */ ATOMIC_STORE(&voice->position, DataPosInt, almemory_order_relaxed); ATOMIC_STORE(&voice->position_fraction, DataPosFrac, almemory_order_relaxed); ATOMIC_STORE(&voice->current_buffer, BufferListItem, almemory_order_release); /* Send any events now, after the position/buffer info was updated. */ enabledevt = ATOMIC_LOAD(&Context->EnabledEvts, almemory_order_acquire); if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted)) { SendAsyncEvent(Context, EventType_BufferCompleted, AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT, SourceID, buffers_done, "Buffer completed" ); alsem_post(&Context->EventSem); } return isplaying; }