#include "config.h" #include #include #include "alMain.h" #include "alu.h" #include "alSource.h" #include "alAuxEffectSlot.h" #include "defs.h" static inline ALfloat do_point(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei) noexcept { return vals[0]; } static inline ALfloat do_lerp(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } static inline ALfloat do_cubic(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept { return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); } static inline ALfloat do_bsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept { ASSUME(istate.bsinc.m > 0); // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) const ALsizei pi{frac >> FRAC_PHASE_BITDIFF}; const ALfloat pf{(frac & ((1< 0); #if defined(HAVE_SSE) || defined(HAVE_NEON) /* Avoid copying the source data if it's aligned like the destination. */ if((reinterpret_cast(src)&15) == (reinterpret_cast(dst)&15)) return src; #endif std::copy_n(src, numsamples, dst); return dst; } template static const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { ASSUME(numsamples > 0); ASSUME(increment > 0); ASSUME(frac >= 0); const InterpState istate{*state}; std::generate_n(dst, numsamples, [&src,&frac,istate,increment]() noexcept -> ALfloat { ALfloat ret{Sampler(istate, src, frac)}; frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; return ret; } ); return dst; } const ALfloat *Resample_point_C(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { return DoResample(state, src, frac, increment, dst, numsamples); } const ALfloat *Resample_lerp_C(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { return DoResample(state, src, frac, increment, dst, numsamples); } const ALfloat *Resample_cubic_C(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { return DoResample(state, src-1, frac, increment, dst, numsamples); } const ALfloat *Resample_bsinc_C(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { return DoResample(state, src-state->bsinc.l, frac, increment, dst, numsamples); } static inline void ApplyCoeffs(ALsizei Offset, ALfloat (&Values)[HRIR_LENGTH][2], const ALsizei IrSize, const ALfloat (&Coeffs)[HRIR_LENGTH][2], const ALfloat left, const ALfloat right) { ASSUME(Offset >= 0 && Offset < HRIR_LENGTH); ASSUME(IrSize >= 2); ASSUME(&Values != &Coeffs); ALsizei count{mini(IrSize, HRIR_LENGTH - Offset)}; ASSUME(count > 0); for(ALsizei c{0};;) { for(;c < count;++c) { Values[Offset][0] += Coeffs[c][0] * left; Values[Offset][1] += Coeffs[c][1] * right; ++Offset; } if(c >= IrSize) break; Offset = 0; count = IrSize; } } #define MixHrtf MixHrtf_C #define MixHrtfBlend MixHrtfBlend_C #define MixDirectHrtf MixDirectHrtf_C #include "hrtf_inc.cpp" void Mix_C(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE], ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, const ALsizei BufferSize) { ASSUME(OutChans > 0); ASSUME(BufferSize > 0); const ALfloat delta{(Counter > 0) ? 1.0f / static_cast(Counter) : 0.0f}; for(ALsizei c{0};c < OutChans;c++) { ALfloat *RESTRICT dst{&OutBuffer[c][OutPos]}; ALsizei pos{0}; ALfloat gain{CurrentGains[c]}; const ALfloat diff{TargetGains[c] - gain}; if(std::fabs(diff) > std::numeric_limits::epsilon()) { ALsizei minsize{mini(BufferSize, Counter)}; const ALfloat step{diff * delta}; ALfloat step_count{0.0f}; for(;pos < minsize;pos++) { dst[pos] += data[pos] * (gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = TargetGains[c]; else gain += step*step_count; CurrentGains[c] = gain; } if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(;pos < BufferSize;pos++) dst[pos] += data[pos]*gain; } } /* Basically the inverse of the above. Rather than one input going to multiple * outputs (each with its own gain), it's multiple inputs (each with its own * gain) going to one output. This applies one row (vs one column) of a matrix * transform. And as the matrices are more or less static once set up, no * stepping is necessary. */ void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE], const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize) { ASSUME(InChans > 0); ASSUME(BufferSize > 0); for(ALsizei c{0};c < InChans;c++) { const ALfloat *RESTRICT src{&data[c][InPos]}; const ALfloat gain{Gains[c]}; if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(ALsizei i{0};i < BufferSize;i++) OutBuffer[i] += src[i] * gain; } }