#include "config.h" #include #include #include "alMain.h" #include "alu.h" #include "alSource.h" #include "alAuxEffectSlot.h" #include "defs.h" static inline ALfloat do_point(const InterpState*, const ALfloat *RESTRICT vals, ALsizei) noexcept { return vals[0]; } static inline ALfloat do_lerp(const InterpState*, const ALfloat *RESTRICT vals, ALsizei frac) noexcept { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } static inline ALfloat do_cubic(const InterpState*, const ALfloat *RESTRICT vals, ALsizei frac) noexcept { return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); } static inline ALfloat do_bsinc(const InterpState *state, const ALfloat *RESTRICT vals, ALsizei frac) noexcept { const ALfloat *fil, *scd, *phd, *spd; ALsizei j_f, pi; ALfloat pf, r; ASSUME(state->bsinc.m > 0); // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) pi = frac >> FRAC_PHASE_BITDIFF; pf = (frac & ((1<bsinc.filter + state->bsinc.m*pi*4; scd = fil + state->bsinc.m; phd = scd + state->bsinc.m; spd = phd + state->bsinc.m; // Apply the scale and phase interpolated filter. r = 0.0f; for(j_f = 0;j_f < state->bsinc.m;j_f++) r += (fil[j_f] + state->bsinc.sf*scd[j_f] + pf*(phd[j_f] + state->bsinc.sf*spd[j_f])) * vals[j_f]; return r; } const ALfloat *Resample_copy_C(const InterpState* UNUSED(state), const ALfloat *RESTRICT src, ALsizei UNUSED(frac), ALint UNUSED(increment), ALfloat *RESTRICT dst, ALsizei numsamples) { ASSUME(numsamples > 0); #if defined(HAVE_SSE) || defined(HAVE_NEON) /* Avoid copying the source data if it's aligned like the destination. */ if((((intptr_t)src)&15) == (((intptr_t)dst)&15)) return src; #endif std::copy_n(src, numsamples, dst); return dst; } template static const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { ASSUME(numsamples > 0); ASSUME(increment > 0); ASSUME(frac >= 0); const InterpState istate = *state; std::generate_n(dst, numsamples, [&src,&frac,istate,increment]() noexcept -> ALfloat { ALfloat ret{Sampler(&istate, src, frac)}; frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; return ret; } ); return dst; } const ALfloat *Resample_point_C(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { return DoResample(state, src, frac, increment, dst, numsamples); } const ALfloat *Resample_lerp_C(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { return DoResample(state, src, frac, increment, dst, numsamples); } const ALfloat *Resample_cubic_C(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { return DoResample(state, src-1, frac, increment, dst, numsamples); } const ALfloat *Resample_bsinc_C(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) { return DoResample(state, src-state->bsinc.l, frac, increment, dst, numsamples); } static inline void ApplyCoeffs(ALsizei Offset, ALfloat (&Values)[HRIR_LENGTH][2], const ALsizei IrSize, const ALfloat (&Coeffs)[HRIR_LENGTH][2], const ALfloat left, const ALfloat right) { ALsizei off{Offset&HRIR_MASK}; ALsizei count{mini(IrSize, HRIR_LENGTH - off)}; ASSUME(IrSize >= 2); ASSUME(&Values != &Coeffs); ASSUME(count > 0); for(ALsizei c{0};;) { for(;c < count;++c) { Values[off][0] += Coeffs[c][0] * left; Values[off][1] += Coeffs[c][1] * right; ++off; } if(c >= IrSize) break; off = 0; count = IrSize; } } #define MixHrtf MixHrtf_C #define MixHrtfBlend MixHrtfBlend_C #define MixDirectHrtf MixDirectHrtf_C #include "hrtf_inc.cpp" void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos, ALsizei BufferSize) { const ALfloat delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f; ALsizei c; ASSUME(OutChans > 0); ASSUME(BufferSize > 0); for(c = 0;c < OutChans;c++) { ALsizei pos = 0; ALfloat gain = CurrentGains[c]; const ALfloat diff = TargetGains[c] - gain; if(fabsf(diff) > std::numeric_limits::epsilon()) { ALsizei minsize = mini(BufferSize, Counter); const ALfloat step = diff * delta; ALfloat step_count = 0.0f; for(;pos < minsize;pos++) { OutBuffer[c][OutPos+pos] += data[pos] * (gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = TargetGains[c]; else gain += step*step_count; CurrentGains[c] = gain; } if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(;pos < BufferSize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } } /* Basically the inverse of the above. Rather than one input going to multiple * outputs (each with its own gain), it's multiple inputs (each with its own * gain) going to one output. This applies one row (vs one column) of a matrix * transform. And as the matrices are more or less static once set up, no * stepping is necessary. */ void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*RESTRICT data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize) { ALsizei c, i; ASSUME(InChans > 0); ASSUME(BufferSize > 0); for(c = 0;c < InChans;c++) { const ALfloat gain = Gains[c]; if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(i = 0;i < BufferSize;i++) OutBuffer[i] += data[c][InPos+i] * gain; } }