#include "config.h" #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alu.h" #include "hrtf.h" #include "defs.h" const ALfloat *Resample_lerp_Neon(const InterpState* UNUSED(state), const ALfloat *restrict src, ALsizei frac, ALint increment, ALfloat *restrict dst, ALsizei numsamples) { const int32x4_t increment4 = vdupq_n_s32(increment*4); const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE); const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK); alignas(16) ALsizei pos_[4], frac_[4]; int32x4_t pos4, frac4; ALsizei todo, pos, i; ASSUME(numsamples > 0); InitiatePositionArrays(frac, increment, frac_, pos_, 4); frac4 = vld1q_s32(frac_); pos4 = vld1q_s32(pos_); todo = numsamples & ~3; for(i = 0;i < todo;i += 4) { const int pos0 = vgetq_lane_s32(pos4, 0); const int pos1 = vgetq_lane_s32(pos4, 1); const int pos2 = vgetq_lane_s32(pos4, 2); const int pos3 = vgetq_lane_s32(pos4, 3); const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]}; const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]}; /* val1 + (val2-val1)*mu */ const float32x4_t r0 = vsubq_f32(val2, val1); const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4); const float32x4_t out = vmlaq_f32(val1, mu, r0); vst1q_f32(&dst[i], out); frac4 = vaddq_s32(frac4, increment4); pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS)); frac4 = vandq_s32(frac4, fracMask4); } /* NOTE: These four elements represent the position *after* the last four * samples, so the lowest element is the next position to resample. */ pos = vgetq_lane_s32(pos4, 0); frac = vgetq_lane_s32(frac4, 0); for(;i < numsamples;++i) { dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); frac += increment; pos += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } const ALfloat *Resample_bsinc_Neon(const InterpState *state, const ALfloat *restrict src, ALsizei frac, ALint increment, ALfloat *restrict dst, ALsizei dstlen) { const ALfloat *const filter = state->bsinc.filter; const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf); const ALsizei m = state->bsinc.m; const float32x4_t *fil, *scd, *phd, *spd; ALsizei pi, i, j, offset; float32x4_t r4; ALfloat pf; ASSUME(m > 0); ASSUME(dstlen > 0); src -= state->bsinc.l; for(i = 0;i < dstlen;i++) { // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) pi = frac >> FRAC_PHASE_BITDIFF; pf = (frac & ((1<> 2; const float32x4_t pf4 = vdupq_n_f32(pf); ASSUME(count > 0); for(j = 0;j < count;j++) { /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ const float32x4_t f4 = vmlaq_f32( vmlaq_f32(fil[j], sf4, scd[j]), pf4, vmlaq_f32(phd[j], sf4, spd[j]) ); /* r += f*src */ r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j*4])); } } r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)), vrev64_f32(vget_low_f32(r4)))); dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2], const ALsizei IrSize, const ALfloat (*restrict Coeffs)[2], ALfloat left, ALfloat right) { ALsizei c; float32x4_t leftright4; { float32x2_t leftright2 = vdup_n_f32(0.0); leftright2 = vset_lane_f32(left, leftright2, 0); leftright2 = vset_lane_f32(right, leftright2, 1); leftright4 = vcombine_f32(leftright2, leftright2); } Values = ASSUME_ALIGNED(Values, 16); Coeffs = ASSUME_ALIGNED(Coeffs, 16); for(c = 0;c < IrSize;c += 2) { const ALsizei o0 = (Offset+c)&HRIR_MASK; const ALsizei o1 = (o0+1)&HRIR_MASK; float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]), vld1_f32((float32_t*)&Values[o1][0])); float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]); vals = vmlaq_f32(vals, coefs, leftright4); vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals)); vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals)); } } #define MixHrtf MixHrtf_Neon #define MixHrtfBlend MixHrtfBlend_Neon #define MixDirectHrtf MixDirectHrtf_Neon #include "hrtf_inc.c" void Mix_Neon(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos, ALsizei BufferSize) { const ALfloat delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f; ALsizei c; ASSUME(OutChans > 0); ASSUME(BufferSize > 0); data = ASSUME_ALIGNED(data, 16); OutBuffer = ASSUME_ALIGNED(OutBuffer, 16); for(c = 0;c < OutChans;c++) { ALsizei pos = 0; ALfloat gain = CurrentGains[c]; const ALfloat step = (TargetGains[c] - gain) * delta; if(fabsf(step) > FLT_EPSILON) { ALsizei minsize = mini(BufferSize, Counter); ALfloat step_count = 0.0f; /* Mix with applying gain steps in aligned multiples of 4. */ if(LIKELY(minsize > 3)) { const float32x4_t four4 = vdupq_n_f32(4.0f); const float32x4_t step4 = vdupq_n_f32(step); const float32x4_t gain4 = vdupq_n_f32(gain); float32x4_t step_count4 = vsetq_lane_f32(0.0f, vsetq_lane_f32(1.0f, vsetq_lane_f32(2.0f, vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3), 2), 1), 0 ); ALsizei todo = minsize >> 2; do { const float32x4_t val4 = vld1q_f32(&data[pos]); float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]); dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); step_count4 = vaddq_f32(step_count4, four4); vst1q_f32(&OutBuffer[c][OutPos+pos], dry4); pos += 4; } while(--todo); /* NOTE: step_count4 now represents the next four counts after * the last four mixed samples, so the lowest element * represents the next step count to apply. */ step_count = vgetq_lane_f32(step_count4, 0); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ for(;pos < minsize;pos++) { OutBuffer[c][OutPos+pos] += data[pos]*(gain + step*step_count); step_count += 1.0f; } if(pos == Counter) gain = TargetGains[c]; else gain += step*step_count; CurrentGains[c] = gain; /* Mix until pos is aligned with 4 or the mix is done. */ minsize = mini(BufferSize, (pos+3)&~3); for(;pos < minsize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; if(LIKELY(BufferSize-pos > 3)) { ALsizei todo = (BufferSize-pos) >> 2; const float32x4_t gain4 = vdupq_n_f32(gain); do { const float32x4_t val4 = vld1q_f32(&data[pos]); float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]); dry4 = vmlaq_f32(dry4, val4, gain4); vst1q_f32(&OutBuffer[c][OutPos+pos], dry4); pos += 4; } while(--todo); } for(;pos < BufferSize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } } void MixRow_Neon(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize) { ALsizei c; ASSUME(InChans > 0); ASSUME(BufferSize > 0); for(c = 0;c < InChans;c++) { ALsizei pos = 0; ALfloat gain = Gains[c]; if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; if(LIKELY(BufferSize > 3)) { ALsizei todo = BufferSize >> 2; float32x4_t gain4 = vdupq_n_f32(gain); do { const float32x4_t val4 = vld1q_f32(&data[c][InPos+pos]); float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]); dry4 = vmlaq_f32(dry4, val4, gain4); vst1q_f32(&OutBuffer[pos], dry4); pos += 4; } while(--todo); } for(;pos < BufferSize;pos++) OutBuffer[pos] += data[c][InPos+pos]*gain; } }