#include "config.h" #include #include "alMain.h" #include "alu.h" #include "alSource.h" #include "alAuxEffectSlot.h" static inline ALfloat point32(const ALfloat *vals, ALuint UNUSED(frac)) { return vals[0]; } static inline ALfloat lerp32(const ALfloat *vals, ALuint frac) { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } static inline ALfloat cubic32(const ALfloat *vals, ALuint frac) { return cubic(vals[-1], vals[0], vals[1], vals[2], frac * (1.0f/FRACTIONONE)); } const ALfloat *Resample_copy32_C(const ALfloat *src, ALuint UNUSED(frac), ALuint increment, ALfloat *restrict dst, ALuint numsamples) { assert(increment==FRACTIONONE); #if defined(HAVE_SSE) || defined(HAVE_NEON) /* Avoid copying the source data if it's aligned like the destination. */ if((((intptr_t)src)&15) == (((intptr_t)dst)&15)) return src; #endif memcpy(dst, src, numsamples*sizeof(ALfloat)); return dst; } #define DECL_TEMPLATE(Sampler) \ const ALfloat *Resample_##Sampler##_C(const ALfloat *src, ALuint frac, \ ALuint increment, ALfloat *restrict dst, ALuint numsamples) \ { \ ALuint i; \ for(i = 0;i < numsamples;i++) \ { \ dst[i] = Sampler(src, frac); \ \ frac += increment; \ src += frac>>FRACTIONBITS; \ frac &= FRACTIONMASK; \ } \ return dst; \ } DECL_TEMPLATE(point32) DECL_TEMPLATE(lerp32) DECL_TEMPLATE(cubic32) #undef DECL_TEMPLATE void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *src, ALuint numsamples) { ALuint i; for(i = 0;i < numsamples;i++) *(dst++) = ALfilterState_processSingle(filter, *(src++)); } static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2], const ALuint IrSize, ALfloat (*restrict Coeffs)[2], const ALfloat (*restrict CoeffStep)[2], ALfloat left, ALfloat right) { ALuint c; for(c = 0;c < IrSize;c++) { const ALuint off = (Offset+c)&HRIR_MASK; Values[off][0] += Coeffs[c][0] * left; Values[off][1] += Coeffs[c][1] * right; Coeffs[c][0] += CoeffStep[c][0]; Coeffs[c][1] += CoeffStep[c][1]; } } static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2], const ALuint IrSize, ALfloat (*restrict Coeffs)[2], ALfloat left, ALfloat right) { ALuint c; for(c = 0;c < IrSize;c++) { const ALuint off = (Offset+c)&HRIR_MASK; Values[off][0] += Coeffs[c][0] * left; Values[off][1] += Coeffs[c][1] * right; } } #define SUFFIX C #include "mixer_inc.c" #undef SUFFIX void MixDirect_C(ALfloat (*restrict OutBuffer)[BUFFERSIZE], const ALfloat *data, MixGains *Gains, ALuint Counter, ALuint OutPos, ALuint BufferSize) { ALfloat DrySend, Step; ALuint c; for(c = 0;c < MaxChannels;c++) { ALuint pos = 0; DrySend = Gains[c].Current; Step = Gains[c].Step; if(Step != 1.0f && Counter > 0) { for(;pos < BufferSize && pos < Counter;pos++) { OutBuffer[c][OutPos+pos] += data[pos]*DrySend; DrySend *= Step; } if(pos == Counter) DrySend = Gains[c].Target; Gains[c].Current = DrySend; } if(!(DrySend > GAIN_SILENCE_THRESHOLD)) continue; for(;pos < BufferSize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*DrySend; } } void MixSend_C(ALfloat (*restrict OutBuffer)[BUFFERSIZE], const ALfloat *data, MixGains *Gain, ALuint Counter, ALuint OutPos, ALuint BufferSize) { ALfloat WetSend, Step; { ALuint pos = 0; WetSend = Gain[0].Current; Step = Gain[0].Step; if(Step != 1.0f && Counter > 0) { for(;pos < BufferSize && pos < Counter;pos++) { OutBuffer[0][OutPos+pos] += data[pos]*WetSend; WetSend *= Step; } if(pos == Counter) WetSend = Gain[0].Target; Gain[0].Current = WetSend; } if(!(WetSend > GAIN_SILENCE_THRESHOLD)) return; for(;pos < BufferSize;pos++) OutBuffer[0][OutPos+pos] += data[pos] * WetSend; } }