#include "config.h" #include #include "alMain.h" #include "alu.h" #include "alSource.h" #include "alAuxEffectSlot.h" static inline ALfloat point32(const ALfloat *vals, ALuint UNUSED(frac)) { return vals[0]; } static inline ALfloat lerp32(const ALfloat *vals, ALuint frac) { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } static inline ALfloat fir4_32(const ALfloat *vals, ALuint frac) { return resample_fir4(vals[-1], vals[0], vals[1], vals[2], frac); } static inline ALfloat fir8_32(const ALfloat *vals, ALuint frac) { return resample_fir8(vals[-3], vals[-2], vals[-1], vals[0], vals[1], vals[2], vals[3], vals[4], frac); } // Obtain the next sample from the interpolator. static inline ALfloat bsinc32(const BsincState *state, const ALfloat *vals, const ALuint frac) { const ALfloat sf = state->sf; ALfloat pf, r; ALuint pi; // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) pi = frac >> FRAC_PHASE_BITDIFF; pf = (frac & ((1<m; const ALint l = state->l; const ALfloat *fil = state->coeffs[pi].filter; const ALfloat *scd = state->coeffs[pi].scDelta; const ALfloat *phd = state->coeffs[pi].phDelta; const ALfloat *spd = state->coeffs[pi].spDelta; ALuint j_f; ALint j_s; // Apply the scale and phase interpolated filter. for(j_f = 0,j_s = l;j_f < m;j_f++,j_s++) r += (fil[j_f] + sf*scd[j_f] + pf*(phd[j_f] + sf*spd[j_f])) * vals[j_s]; } return r; } const ALfloat *Resample_copy32_C(const BsincState* UNUSED(state), const ALfloat *src, ALuint UNUSED(frac), ALuint UNUSED(increment), ALfloat *restrict dst, ALuint numsamples) { #if defined(HAVE_SSE) || defined(HAVE_NEON) /* Avoid copying the source data if it's aligned like the destination. */ if((((intptr_t)src)&15) == (((intptr_t)dst)&15)) return src; #endif memcpy(dst, src, numsamples*sizeof(ALfloat)); return dst; } #define DECL_TEMPLATE(Sampler) \ const ALfloat *Resample_##Sampler##_C(const BsincState* UNUSED(state), \ const ALfloat *src, ALuint frac, ALuint increment, \ ALfloat *restrict dst, ALuint numsamples) \ { \ ALuint i; \ for(i = 0;i < numsamples;i++) \ { \ dst[i] = Sampler(src, frac); \ \ frac += increment; \ src += frac>>FRACTIONBITS; \ frac &= FRACTIONMASK; \ } \ return dst; \ } DECL_TEMPLATE(point32) DECL_TEMPLATE(lerp32) DECL_TEMPLATE(fir4_32) DECL_TEMPLATE(fir8_32) const ALfloat *Resample_bsinc32_C(const BsincState *state, const ALfloat *src, ALuint frac, ALuint increment, ALfloat *restrict dst, ALuint dstlen) { ALuint i; for(i = 0;i < dstlen;i++) { dst[i] = bsinc32(state, src, frac); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } #undef DECL_TEMPLATE void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *src, ALuint numsamples) { ALuint i; for(i = 0;i < numsamples;i++) *(dst++) = ALfilterState_processSingle(filter, *(src++)); } static inline void SetupCoeffs(ALfloat (*restrict OutCoeffs)[2], const HrtfParams *hrtfparams, ALuint IrSize, ALuint Counter) { ALuint c; for(c = 0;c < IrSize;c++) { OutCoeffs[c][0] = hrtfparams->Coeffs[c][0] - (hrtfparams->CoeffStep[c][0]*Counter); OutCoeffs[c][1] = hrtfparams->Coeffs[c][1] - (hrtfparams->CoeffStep[c][1]*Counter); } } static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2], const ALuint IrSize, ALfloat (*restrict Coeffs)[2], const ALfloat (*restrict CoeffStep)[2], ALfloat left, ALfloat right) { ALuint c; for(c = 0;c < IrSize;c++) { const ALuint off = (Offset+c)&HRIR_MASK; Values[off][0] += Coeffs[c][0] * left; Values[off][1] += Coeffs[c][1] * right; Coeffs[c][0] += CoeffStep[c][0]; Coeffs[c][1] += CoeffStep[c][1]; } } static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2], const ALuint IrSize, ALfloat (*restrict Coeffs)[2], ALfloat left, ALfloat right) { ALuint c; for(c = 0;c < IrSize;c++) { const ALuint off = (Offset+c)&HRIR_MASK; Values[off][0] += Coeffs[c][0] * left; Values[off][1] += Coeffs[c][1] * right; } } #define MixHrtf MixHrtf_C #include "mixer_inc.c" #undef MixHrtf void Mix_C(const ALfloat *data, ALuint OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE], MixGains *Gains, ALuint Counter, ALuint OutPos, ALuint BufferSize) { ALfloat gain, step; ALuint c; for(c = 0;c < OutChans;c++) { ALuint pos = 0; gain = Gains[c].Current; step = Gains[c].Step; if(step != 0.0f && Counter > 0) { ALuint minsize = minu(BufferSize, Counter); for(;pos < minsize;pos++) { OutBuffer[c][OutPos+pos] += data[pos]*gain; gain += step; } if(pos == Counter) gain = Gains[c].Target; Gains[c].Current = gain; } if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(;pos < BufferSize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } }