#include "config.h" #include #include "alMain.h" #include "alu.h" #include "alSource.h" #include "alAuxEffectSlot.h" static inline ALfloat point32(const ALfloat *restrict vals, ALsizei UNUSED(frac)) { return vals[0]; } static inline ALfloat lerp32(const ALfloat *restrict vals, ALsizei frac) { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } static inline ALfloat fir4_32(const ALfloat *restrict vals, ALsizei frac) { return resample_fir4(vals[-1], vals[0], vals[1], vals[2], frac); } const ALfloat *Resample_copy32_C(const InterpState* UNUSED(state), const ALfloat *restrict src, ALsizei UNUSED(frac), ALint UNUSED(increment), ALfloat *restrict dst, ALsizei numsamples) { #if defined(HAVE_SSE) || defined(HAVE_NEON) /* Avoid copying the source data if it's aligned like the destination. */ if((((intptr_t)src)&15) == (((intptr_t)dst)&15)) return src; #endif memcpy(dst, src, numsamples*sizeof(ALfloat)); return dst; } #define DECL_TEMPLATE(Sampler) \ const ALfloat *Resample_##Sampler##_C(const InterpState* UNUSED(state), \ const ALfloat *restrict src, ALsizei frac, ALint increment, \ ALfloat *restrict dst, ALsizei numsamples) \ { \ ALsizei i; \ for(i = 0;i < numsamples;i++) \ { \ dst[i] = Sampler(src, frac); \ \ frac += increment; \ src += frac>>FRACTIONBITS; \ frac &= FRACTIONMASK; \ } \ return dst; \ } DECL_TEMPLATE(point32) DECL_TEMPLATE(lerp32) DECL_TEMPLATE(fir4_32) #undef DECL_TEMPLATE const ALfloat *Resample_bsinc32_C(const InterpState *state, const ALfloat *restrict src, ALsizei frac, ALint increment, ALfloat *restrict dst, ALsizei dstlen) { const ALfloat *fil, *scd, *phd, *spd; const ALfloat sf = state->bsinc.sf; const ALsizei m = state->bsinc.m; ALsizei j_f, pi, i; ALfloat pf, r; src += state->bsinc.l; for(i = 0;i < dstlen;i++) { // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) pi = frac >> FRAC_PHASE_BITDIFF; pf = (frac & ((1<bsinc.coeffs[pi].filter, 16); scd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].scDelta, 16); phd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].phDelta, 16); spd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].spDelta, 16); // Apply the scale and phase interpolated filter. r = 0.0f; for(j_f = 0;j_f < m;j_f++) r += (fil[j_f] + sf*scd[j_f] + pf*(phd[j_f] + sf*spd[j_f])) * src[j_f]; dst[i] = r; frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples) { ALsizei i; if(numsamples > 1) { dst[0] = filter->b0 * src[0] + filter->b1 * filter->x[0] + filter->b2 * filter->x[1] - filter->a1 * filter->y[0] - filter->a2 * filter->y[1]; dst[1] = filter->b0 * src[1] + filter->b1 * src[0] + filter->b2 * filter->x[0] - filter->a1 * dst[0] - filter->a2 * filter->y[0]; for(i = 2;i < numsamples;i++) dst[i] = filter->b0 * src[i] + filter->b1 * src[i-1] + filter->b2 * src[i-2] - filter->a1 * dst[i-1] - filter->a2 * dst[i-2]; filter->x[0] = src[i-1]; filter->x[1] = src[i-2]; filter->y[0] = dst[i-1]; filter->y[1] = dst[i-2]; } else if(numsamples == 1) { dst[0] = filter->b0 * src[0] + filter->b1 * filter->x[0] + filter->b2 * filter->x[1] - filter->a1 * filter->y[0] - filter->a2 * filter->y[1]; filter->x[1] = filter->x[0]; filter->x[0] = src[0]; filter->y[1] = filter->y[0]; filter->y[0] = dst[0]; } } static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2], const ALsizei IrSize, const ALfloat (*restrict Coeffs)[2], ALfloat left, ALfloat right) { ALsizei c; for(c = 0;c < IrSize;c++) { const ALsizei off = (Offset+c)&HRIR_MASK; Values[off][0] += Coeffs[c][0] * left; Values[off][1] += Coeffs[c][1] * right; } } #define MixHrtf MixHrtf_C #define MixHrtfBlend MixHrtfBlend_C #define MixDirectHrtf MixDirectHrtf_C #include "mixer_inc.c" #undef MixHrtf void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos, ALsizei BufferSize) { ALfloat gain, delta, step; ALsizei c; delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f; for(c = 0;c < OutChans;c++) { ALsizei pos = 0; gain = CurrentGains[c]; step = (TargetGains[c] - gain) * delta; if(fabsf(step) > FLT_EPSILON) { ALsizei minsize = mini(BufferSize, Counter); for(;pos < minsize;pos++) { OutBuffer[c][OutPos+pos] += data[pos]*gain; gain += step; } if(pos == Counter) gain = TargetGains[c]; CurrentGains[c] = gain; } if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(;pos < BufferSize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } } /* Basically the inverse of the above. Rather than one input going to multiple * outputs (each with its own gain), it's multiple inputs (each with its own * gain) going to one output. This applies one row (vs one column) of a matrix * transform. And as the matrices are more or less static once set up, no * stepping is necessary. */ void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize) { ALsizei c, i; for(c = 0;c < InChans;c++) { ALfloat gain = Gains[c]; if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; for(i = 0;i < BufferSize;i++) OutBuffer[i] += data[c][InPos+i] * gain; } }