#include "config.h" #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alu.h" #include "alSource.h" #include "alAuxEffectSlot.h" #include "mixer_defs.h" const ALfloat *Resample_bsinc32_SSE(const InterpState *state, const ALfloat *restrict src, ALsizei frac, ALint increment, ALfloat *restrict dst, ALsizei dstlen) { const __m128 sf4 = _mm_set1_ps(state->bsinc.sf); const ALsizei m = state->bsinc.m; const ALfloat *fil, *scd, *phd, *spd; ALsizei pi, i, j; ALfloat pf; __m128 r4; src += state->bsinc.l; for(i = 0;i < dstlen;i++) { // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) pi = frac >> FRAC_PHASE_BITDIFF; pf = (frac & ((1<bsinc.coeffs[pi].filter, 16); scd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].scDelta, 16); phd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].phDelta, 16); spd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].spDelta, 16); // Apply the scale and phase interpolated filter. r4 = _mm_setzero_ps(); { const __m128 pf4 = _mm_set1_ps(pf); #define LD4(x) _mm_load_ps(x) #define ULD4(x) _mm_loadu_ps(x) #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) for(j = 0;j < m;j+=4) { /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ const __m128 f4 = MLA4(MLA4(LD4(&fil[j]), sf4, LD4(&scd[j])), pf4, MLA4(LD4(&phd[j]), sf4, LD4(&spd[j])) ); /* r += f*src */ r4 = MLA4(r4, f4, ULD4(&src[j])); } #undef MLA4 #undef ULD4 #undef LD4 } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); dst[i] = _mm_cvtss_f32(r4); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2], const ALsizei IrSize, const ALfloat (*restrict Coeffs)[2], ALfloat left, ALfloat right) { const __m128 lrlr = _mm_setr_ps(left, right, left, right); __m128 vals = _mm_setzero_ps(); __m128 coeffs; ALsizei i; Values = ASSUME_ALIGNED(Values, 16); Coeffs = ASSUME_ALIGNED(Coeffs, 16); if((Offset&1)) { const ALsizei o0 = Offset&HRIR_MASK; const ALsizei o1 = (Offset+IrSize-1)&HRIR_MASK; __m128 imp0, imp1; coeffs = _mm_load_ps(&Coeffs[0][0]); vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]); imp0 = _mm_mul_ps(lrlr, coeffs); vals = _mm_add_ps(imp0, vals); _mm_storel_pi((__m64*)&Values[o0][0], vals); for(i = 1;i < IrSize-1;i += 2) { const ALsizei o2 = (Offset+i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i+1][0]); vals = _mm_load_ps(&Values[o2][0]); imp1 = _mm_mul_ps(lrlr, coeffs); imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Values[o2][0], vals); imp0 = imp1; } vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]); imp0 = _mm_movehl_ps(imp0, imp0); vals = _mm_add_ps(imp0, vals); _mm_storel_pi((__m64*)&Values[o1][0], vals); } else { for(i = 0;i < IrSize;i += 2) { const ALsizei o = (Offset + i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i][0]); vals = _mm_load_ps(&Values[o][0]); vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs)); _mm_store_ps(&Values[o][0], vals); } } } #define MixHrtf MixHrtf_SSE #define MixDirectHrtf MixDirectHrtf_SSE #include "mixer_inc.c" #undef MixHrtf void Mix_SSE(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos, ALsizei BufferSize) { ALfloat gain, delta, step; __m128 gain4; ALsizei c; delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f; for(c = 0;c < OutChans;c++) { ALsizei pos = 0; gain = CurrentGains[c]; step = (TargetGains[c] - gain) * delta; if(fabsf(step) > FLT_EPSILON) { ALsizei minsize = mini(BufferSize, Counter); /* Mix with applying gain steps in aligned multiples of 4. */ if(minsize-pos > 3) { __m128 step4; gain4 = _mm_setr_ps( gain, gain + step, gain + step + step, gain + step + step + step ); step4 = _mm_set1_ps(step + step + step + step); do { const __m128 val4 = _mm_load_ps(&data[pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); gain4 = _mm_add_ps(gain4, step4); _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4); pos += 4; } while(minsize-pos > 3); /* NOTE: gain4 now represents the next four gains after the * last four mixed samples, so the lowest element represents * the next gain to apply. */ gain = _mm_cvtss_f32(gain4); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ for(;pos < minsize;pos++) { OutBuffer[c][OutPos+pos] += data[pos]*gain; gain += step; } if(pos == Counter) gain = TargetGains[c]; CurrentGains[c] = gain; /* Mix until pos is aligned with 4 or the mix is done. */ minsize = mini(BufferSize, (pos+3)&~3); for(;pos < minsize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; gain4 = _mm_set1_ps(gain); for(;BufferSize-pos > 3;pos += 4) { const __m128 val4 = _mm_load_ps(&data[pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4); } for(;pos < BufferSize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } } void MixRow_SSE(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize) { __m128 gain4; ALsizei c; for(c = 0;c < InChans;c++) { ALsizei pos = 0; ALfloat gain = Gains[c]; if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; gain4 = _mm_set1_ps(gain); for(;BufferSize-pos > 3;pos += 4) { const __m128 val4 = _mm_load_ps(&data[c][InPos+pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); _mm_store_ps(&OutBuffer[pos], dry4); } for(;pos < BufferSize;pos++) OutBuffer[pos] += data[c][InPos+pos]*gain; } }