#include "config.h" #ifdef IN_IDE_PARSER /* KDevelop's parser won't recognize these defines that get added by the -msse * switch used to compile this source. Without them, xmmintrin.h fails to * declare anything. */ #define __MMX__ #define __SSE__ #endif #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alu.h" #include "alSource.h" #include "alAuxEffectSlot.h" #include "mixer_defs.h" static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2], const ALuint IrSize, ALfloat (*restrict Coeffs)[2], const ALfloat (*restrict CoeffStep)[2], ALfloat left, ALfloat right) { const __m128 lrlr = _mm_set_ps(left, right, left, right); __m128 coeffs, deltas, imp0, imp1; __m128 vals = _mm_setzero_ps(); ALuint i; if((Offset&1)) { const ALuint o0 = Offset&HRIR_MASK; const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[0][0]); deltas = _mm_load_ps(&CoeffStep[0][0]); vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]); imp0 = _mm_mul_ps(lrlr, coeffs); coeffs = _mm_add_ps(coeffs, deltas); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Coeffs[0][0], coeffs); _mm_storel_pi((__m64*)&Values[o0][0], vals); for(i = 1;i < IrSize-1;i += 2) { const ALuint o2 = (Offset+i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i+1][0]); deltas = _mm_load_ps(&CoeffStep[i+1][0]); vals = _mm_load_ps(&Values[o2][0]); imp1 = _mm_mul_ps(lrlr, coeffs); coeffs = _mm_add_ps(coeffs, deltas); imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Coeffs[i+1][0], coeffs); _mm_store_ps(&Values[o2][0], vals); imp0 = imp1; } vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]); imp0 = _mm_movehl_ps(imp0, imp0); vals = _mm_add_ps(imp0, vals); _mm_storel_pi((__m64*)&Values[o1][0], vals); } else { for(i = 0;i < IrSize;i += 2) { const ALuint o = (Offset + i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i][0]); deltas = _mm_load_ps(&CoeffStep[i][0]); vals = _mm_load_ps(&Values[o][0]); imp0 = _mm_mul_ps(lrlr, coeffs); coeffs = _mm_add_ps(coeffs, deltas); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Coeffs[i][0], coeffs); _mm_store_ps(&Values[o][0], vals); } } } static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2], const ALuint IrSize, ALfloat (*restrict Coeffs)[2], ALfloat left, ALfloat right) { const __m128 lrlr = _mm_set_ps(left, right, left, right); __m128 vals = _mm_setzero_ps(); __m128 coeffs; ALuint i; if((Offset&1)) { const ALuint o0 = Offset&HRIR_MASK; const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK; __m128 imp0, imp1; coeffs = _mm_load_ps(&Coeffs[0][0]); vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]); imp0 = _mm_mul_ps(lrlr, coeffs); vals = _mm_add_ps(imp0, vals); _mm_storel_pi((__m64*)&Values[o0][0], vals); for(i = 1;i < IrSize-1;i += 2) { const ALuint o2 = (Offset+i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i+1][0]); vals = _mm_load_ps(&Values[o2][0]); imp1 = _mm_mul_ps(lrlr, coeffs); imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Values[o2][0], vals); imp0 = imp1; } vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]); imp0 = _mm_movehl_ps(imp0, imp0); vals = _mm_add_ps(imp0, vals); _mm_storel_pi((__m64*)&Values[o1][0], vals); } else { for(i = 0;i < IrSize;i += 2) { const ALuint o = (Offset + i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i][0]); vals = _mm_load_ps(&Values[o][0]); vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs)); _mm_store_ps(&Values[o][0], vals); } } } #define SUFFIX SSE #include "mixer_inc.c" #undef SUFFIX void MixDirect_SSE(DirectParams *params, const ALfloat *restrict data, ALuint srcchan, ALuint OutPos, ALuint BufferSize) { ALfloat (*restrict OutBuffer)[BUFFERSIZE] = params->OutBuffer; ALuint Counter = maxu(params->Counter, OutPos) - OutPos; ALfloat DrySend, Step; __m128 gain, step; ALuint c; for(c = 0;c < MaxChannels;c++) { ALuint pos = 0; DrySend = params->Mix.Gains.Current[srcchan][c]; Step = params->Mix.Gains.Step[srcchan][c]; if(Step != 1.0f && Counter > 0) { /* Mix with applying gain steps in aligned multiples of 4. */ if(BufferSize-pos > 3 && Counter-pos > 3) { gain = _mm_set_ps( DrySend, DrySend * Step, DrySend * Step * Step, DrySend * Step * Step * Step ); step = _mm_set1_ps(Step * Step * Step * Step); do { const __m128 val4 = _mm_load_ps(&data[pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain)); gain = _mm_mul_ps(gain, step); _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4); pos += 4; } while(BufferSize-pos > 3 && Counter-pos > 3); DrySend = _mm_cvtss_f32(_mm_shuffle_ps(gain, gain, _MM_SHUFFLE(3, 3, 3, 3))); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ for(;pos < BufferSize && pos < Counter;pos++) { OutBuffer[c][OutPos+pos] += data[pos]*DrySend; DrySend *= Step; } if(pos == Counter) DrySend = params->Mix.Gains.Target[srcchan][c]; params->Mix.Gains.Current[srcchan][c] = DrySend; /* Mix until pos is aligned with 4 or the mix is done. */ for(;pos < BufferSize && (pos&3) != 0;pos++) OutBuffer[c][OutPos+pos] += data[pos]*DrySend; } if(!(DrySend > GAIN_SILENCE_THRESHOLD)) continue; gain = _mm_set1_ps(DrySend); for(;BufferSize-pos > 3;pos += 4) { const __m128 val4 = _mm_load_ps(&data[pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain)); _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4); } for(;pos < BufferSize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*DrySend; } } void MixSend_SSE(SendParams *params, const ALfloat *restrict data, ALuint OutPos, ALuint BufferSize) { ALfloat (*restrict OutBuffer)[BUFFERSIZE] = params->OutBuffer; ALuint Counter = maxu(params->Counter, OutPos) - OutPos; ALfloat WetGain, Step; __m128 gain, step; { ALuint pos = 0; WetGain = params->Gain.Current; Step = params->Gain.Step; if(Step != 1.0f && Counter > 0) { if(BufferSize-pos > 3 && Counter-pos > 3) { gain = _mm_set_ps( WetGain, WetGain * Step, WetGain * Step * Step, WetGain * Step * Step * Step ); step = _mm_set1_ps(Step * Step * Step * Step); do { const __m128 val4 = _mm_load_ps(&data[pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[0][OutPos+pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain)); gain = _mm_mul_ps(gain, step); _mm_store_ps(&OutBuffer[0][OutPos+pos], dry4); pos += 4; } while(BufferSize-pos > 3 && Counter-pos > 3); WetGain = _mm_cvtss_f32(_mm_shuffle_ps(gain, gain, _MM_SHUFFLE(3, 3, 3, 3))); } for(;pos < BufferSize && pos < Counter;pos++) { OutBuffer[0][OutPos+pos] += data[pos]*WetGain; WetGain *= Step; } if(pos == Counter) WetGain = params->Gain.Target; params->Gain.Current = WetGain; for(;pos < BufferSize && (pos&3) != 0;pos++) OutBuffer[0][OutPos+pos] += data[pos]*WetGain; } if(!(WetGain > GAIN_SILENCE_THRESHOLD)) return; gain = _mm_set1_ps(WetGain); for(;BufferSize-pos > 3;pos += 4) { const __m128 val4 = _mm_load_ps(&data[pos]); __m128 wet4 = _mm_load_ps(&OutBuffer[0][OutPos+pos]); wet4 = _mm_add_ps(wet4, _mm_mul_ps(val4, gain)); _mm_store_ps(&OutBuffer[0][OutPos+pos], wet4); } for(;pos < BufferSize;pos++) OutBuffer[0][OutPos+pos] += data[pos] * WetGain; } }