#include "config.h" #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alu.h" #include "alSource.h" #include "alAuxEffectSlot.h" #include "mixer_defs.h" const ALfloat *Resample_bsinc32_SSE(const BsincState *state, const ALfloat *restrict src, ALuint frac, ALuint increment, ALfloat *restrict dst, ALuint dstlen) { const __m128 sf4 = _mm_set1_ps(state->sf); const ALuint m = state->m; const ALint l = state->l; const ALfloat *fil, *scd, *phd, *spd; ALuint pi, j_f, i; ALfloat pf; ALint j_s; __m128 r4; for(i = 0;i < dstlen;i++) { // Calculate the phase index and factor. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) pi = frac >> FRAC_PHASE_BITDIFF; pf = (frac & ((1<coeffs[pi].filter; scd = state->coeffs[pi].scDelta; phd = state->coeffs[pi].phDelta; spd = state->coeffs[pi].spDelta; // Apply the scale and phase interpolated filter. r4 = _mm_setzero_ps(); { const __m128 pf4 = _mm_set1_ps(pf); for(j_f = 0,j_s = l;j_f < m;j_f+=4,j_s+=4) { const __m128 f4 = _mm_add_ps( _mm_add_ps( _mm_load_ps(&fil[j_f]), _mm_mul_ps(sf4, _mm_load_ps(&scd[j_f])) ), _mm_mul_ps( pf4, _mm_add_ps( _mm_load_ps(&phd[j_f]), _mm_mul_ps(sf4, _mm_load_ps(&spd[j_f])) ) ) ); r4 = _mm_add_ps(r4, _mm_mul_ps(f4, _mm_loadu_ps(&src[j_s]))); } } r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); dst[i] = _mm_cvtss_f32(r4); frac += increment; src += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2], const ALuint IrSize, ALfloat (*restrict Coeffs)[2], const ALfloat (*restrict CoeffStep)[2], ALfloat left, ALfloat right) { const __m128 lrlr = _mm_setr_ps(left, right, left, right); __m128 coeffs, deltas, imp0, imp1; __m128 vals = _mm_setzero_ps(); ALuint i; if((Offset&1)) { const ALuint o0 = Offset&HRIR_MASK; const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[0][0]); deltas = _mm_load_ps(&CoeffStep[0][0]); vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]); imp0 = _mm_mul_ps(lrlr, coeffs); coeffs = _mm_add_ps(coeffs, deltas); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Coeffs[0][0], coeffs); _mm_storel_pi((__m64*)&Values[o0][0], vals); for(i = 1;i < IrSize-1;i += 2) { const ALuint o2 = (Offset+i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i+1][0]); deltas = _mm_load_ps(&CoeffStep[i+1][0]); vals = _mm_load_ps(&Values[o2][0]); imp1 = _mm_mul_ps(lrlr, coeffs); coeffs = _mm_add_ps(coeffs, deltas); imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Coeffs[i+1][0], coeffs); _mm_store_ps(&Values[o2][0], vals); imp0 = imp1; } vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]); imp0 = _mm_movehl_ps(imp0, imp0); vals = _mm_add_ps(imp0, vals); _mm_storel_pi((__m64*)&Values[o1][0], vals); } else { for(i = 0;i < IrSize;i += 2) { const ALuint o = (Offset + i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i][0]); deltas = _mm_load_ps(&CoeffStep[i][0]); vals = _mm_load_ps(&Values[o][0]); imp0 = _mm_mul_ps(lrlr, coeffs); coeffs = _mm_add_ps(coeffs, deltas); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Coeffs[i][0], coeffs); _mm_store_ps(&Values[o][0], vals); } } } static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2], const ALuint IrSize, ALfloat (*restrict Coeffs)[2], ALfloat left, ALfloat right) { const __m128 lrlr = _mm_setr_ps(left, right, left, right); __m128 vals = _mm_setzero_ps(); __m128 coeffs; ALuint i; if((Offset&1)) { const ALuint o0 = Offset&HRIR_MASK; const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK; __m128 imp0, imp1; coeffs = _mm_load_ps(&Coeffs[0][0]); vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]); imp0 = _mm_mul_ps(lrlr, coeffs); vals = _mm_add_ps(imp0, vals); _mm_storel_pi((__m64*)&Values[o0][0], vals); for(i = 1;i < IrSize-1;i += 2) { const ALuint o2 = (Offset+i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i+1][0]); vals = _mm_load_ps(&Values[o2][0]); imp1 = _mm_mul_ps(lrlr, coeffs); imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); vals = _mm_add_ps(imp0, vals); _mm_store_ps(&Values[o2][0], vals); imp0 = imp1; } vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]); imp0 = _mm_movehl_ps(imp0, imp0); vals = _mm_add_ps(imp0, vals); _mm_storel_pi((__m64*)&Values[o1][0], vals); } else { for(i = 0;i < IrSize;i += 2) { const ALuint o = (Offset + i)&HRIR_MASK; coeffs = _mm_load_ps(&Coeffs[i][0]); vals = _mm_load_ps(&Values[o][0]); vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs)); _mm_store_ps(&Values[o][0], vals); } } } #define MixHrtf MixHrtf_SSE #define MixDirectHrtf MixDirectHrtf_SSE #include "mixer_inc.c" #undef MixHrtf void Mix_SSE(const ALfloat *data, ALuint OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALfloat *CurrentGains, const ALfloat *TargetGains, ALuint Counter, ALuint OutPos, ALuint BufferSize) { ALfloat gain, delta, step; __m128 gain4; ALuint c; delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f; for(c = 0;c < OutChans;c++) { ALuint pos = 0; gain = CurrentGains[c]; step = (TargetGains[c] - gain) * delta; if(fabsf(step) > FLT_EPSILON) { ALuint minsize = minu(BufferSize, Counter); /* Mix with applying gain steps in aligned multiples of 4. */ if(minsize-pos > 3) { __m128 step4; gain4 = _mm_setr_ps( gain, gain + step, gain + step + step, gain + step + step + step ); step4 = _mm_set1_ps(step + step + step + step); do { const __m128 val4 = _mm_load_ps(&data[pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); gain4 = _mm_add_ps(gain4, step4); _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4); pos += 4; } while(minsize-pos > 3); /* NOTE: gain4 now represents the next four gains after the * last four mixed samples, so the lowest element represents * the next gain to apply. */ gain = _mm_cvtss_f32(gain4); } /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ for(;pos < minsize;pos++) { OutBuffer[c][OutPos+pos] += data[pos]*gain; gain += step; } if(pos == Counter) gain = TargetGains[c]; CurrentGains[c] = gain; /* Mix until pos is aligned with 4 or the mix is done. */ minsize = minu(BufferSize, (pos+3)&~3); for(;pos < minsize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; gain4 = _mm_set1_ps(gain); for(;BufferSize-pos > 3;pos += 4) { const __m128 val4 = _mm_load_ps(&data[pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4); } for(;pos < BufferSize;pos++) OutBuffer[c][OutPos+pos] += data[pos]*gain; } } void MixRow_SSE(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALuint InChans, ALuint InPos, ALuint BufferSize) { __m128 gain4; ALuint c; for(c = 0;c < InChans;c++) { ALuint pos = 0; ALfloat gain = Gains[c]; if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) continue; gain4 = _mm_set1_ps(gain); for(;BufferSize-pos > 3;pos += 4) { const __m128 val4 = _mm_load_ps(&data[c][InPos+pos]); __m128 dry4 = _mm_load_ps(&OutBuffer[pos]); dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); _mm_store_ps(&OutBuffer[pos], dry4); } for(;pos < BufferSize;pos++) OutBuffer[pos] += data[c][InPos+pos]*gain; } }