/** * OpenAL cross platform audio library * Copyright (C) 2014 by Timothy Arceri . * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include "alu.h" #include "mixer_defs.h" const ALfloat *Resample_lerp32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src, ALuint frac, ALint increment, ALfloat *restrict dst, ALsizei numsamples) { const __m128i increment4 = _mm_set1_epi32(increment*4); const __m128 fracOne4 = _mm_set1_ps(1.0f/FRACTIONONE); const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK); union { alignas(16) ALint i[4]; float f[4]; } pos_; union { alignas(16) ALuint i[4]; float f[4]; } frac_; __m128i frac4, pos4; ALint pos; ALsizei i; InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4); frac4 = _mm_castps_si128(_mm_load_ps(frac_.f)); pos4 = _mm_castps_si128(_mm_load_ps(pos_.f)); for(i = 0;numsamples-i > 3;i += 4) { const __m128 val1 = _mm_setr_ps(src[pos_.i[0]], src[pos_.i[1]], src[pos_.i[2]], src[pos_.i[3]]); const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]); /* val1 + (val2-val1)*mu */ const __m128 r0 = _mm_sub_ps(val2, val1); const __m128 mu = _mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4); const __m128 out = _mm_add_ps(val1, _mm_mul_ps(mu, r0)); _mm_store_ps(&dst[i], out); frac4 = _mm_add_epi32(frac4, increment4); pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS)); frac4 = _mm_and_si128(frac4, fracMask4); pos_.i[0] = _mm_extract_epi32(pos4, 0); pos_.i[1] = _mm_extract_epi32(pos4, 1); pos_.i[2] = _mm_extract_epi32(pos4, 2); pos_.i[3] = _mm_extract_epi32(pos4, 3); } /* NOTE: These four elements represent the position *after* the last four * samples, so the lowest element is the next position to resample. */ pos = pos_.i[0]; frac = _mm_cvtsi128_si32(frac4); for(;i < numsamples;i++) { dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); frac += increment; pos += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } const ALfloat *Resample_fir4_32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src, ALuint frac, ALint increment, ALfloat *restrict dst, ALsizei numsamples) { const __m128i increment4 = _mm_set1_epi32(increment*4); const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK); union { alignas(16) ALint i[4]; float f[4]; } pos_; union { alignas(16) ALuint i[4]; float f[4]; } frac_; __m128i frac4, pos4; ALint pos; ALsizei i; InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4); frac4 = _mm_castps_si128(_mm_load_ps(frac_.f)); pos4 = _mm_castps_si128(_mm_load_ps(pos_.f)); --src; for(i = 0;numsamples-i > 3;i += 4) { const __m128 val0 = _mm_loadu_ps(&src[pos_.i[0]]); const __m128 val1 = _mm_loadu_ps(&src[pos_.i[1]]); const __m128 val2 = _mm_loadu_ps(&src[pos_.i[2]]); const __m128 val3 = _mm_loadu_ps(&src[pos_.i[3]]); __m128 k0 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[0]]); __m128 k1 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[1]]); __m128 k2 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[2]]); __m128 k3 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[3]]); __m128 out; k0 = _mm_mul_ps(k0, val0); k1 = _mm_mul_ps(k1, val1); k2 = _mm_mul_ps(k2, val2); k3 = _mm_mul_ps(k3, val3); k0 = _mm_hadd_ps(k0, k1); k2 = _mm_hadd_ps(k2, k3); out = _mm_hadd_ps(k0, k2); _mm_store_ps(&dst[i], out); frac4 = _mm_add_epi32(frac4, increment4); pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS)); frac4 = _mm_and_si128(frac4, fracMask4); pos_.i[0] = _mm_extract_epi32(pos4, 0); pos_.i[1] = _mm_extract_epi32(pos4, 1); pos_.i[2] = _mm_extract_epi32(pos4, 2); pos_.i[3] = _mm_extract_epi32(pos4, 3); frac_.i[0] = _mm_extract_epi32(frac4, 0); frac_.i[1] = _mm_extract_epi32(frac4, 1); frac_.i[2] = _mm_extract_epi32(frac4, 2); frac_.i[3] = _mm_extract_epi32(frac4, 3); } pos = pos_.i[0]; frac = frac_.i[0]; for(;i < numsamples;i++) { dst[i] = resample_fir4(src[pos], src[pos+1], src[pos+2], src[pos+3], frac); frac += increment; pos += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; } const ALfloat *Resample_fir8_32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src, ALuint frac, ALint increment, ALfloat *restrict dst, ALsizei numsamples) { const __m128i increment4 = _mm_set1_epi32(increment*4); const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK); union { alignas(16) ALint i[4]; float f[4]; } pos_; union { alignas(16) ALuint i[4]; float f[4]; } frac_; __m128i frac4, pos4; ALsizei i, j; ALint pos; InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4); frac4 = _mm_castps_si128(_mm_load_ps(frac_.f)); pos4 = _mm_castps_si128(_mm_load_ps(pos_.f)); src -= 3; for(i = 0;numsamples-i > 3;i += 4) { __m128 out[2]; for(j = 0;j < 8;j+=4) { const __m128 val0 = _mm_loadu_ps(&src[pos_.i[0]+j]); const __m128 val1 = _mm_loadu_ps(&src[pos_.i[1]+j]); const __m128 val2 = _mm_loadu_ps(&src[pos_.i[2]+j]); const __m128 val3 = _mm_loadu_ps(&src[pos_.i[3]+j]); __m128 k0 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[0]][j]); __m128 k1 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[1]][j]); __m128 k2 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[2]][j]); __m128 k3 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[3]][j]); k0 = _mm_mul_ps(k0, val0); k1 = _mm_mul_ps(k1, val1); k2 = _mm_mul_ps(k2, val2); k3 = _mm_mul_ps(k3, val3); k0 = _mm_hadd_ps(k0, k1); k2 = _mm_hadd_ps(k2, k3); out[j>>2] = _mm_hadd_ps(k0, k2); } out[0] = _mm_add_ps(out[0], out[1]); _mm_store_ps(&dst[i], out[0]); frac4 = _mm_add_epi32(frac4, increment4); pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS)); frac4 = _mm_and_si128(frac4, fracMask4); pos_.i[0] = _mm_extract_epi32(pos4, 0); pos_.i[1] = _mm_extract_epi32(pos4, 1); pos_.i[2] = _mm_extract_epi32(pos4, 2); pos_.i[3] = _mm_extract_epi32(pos4, 3); frac_.i[0] = _mm_extract_epi32(frac4, 0); frac_.i[1] = _mm_extract_epi32(frac4, 1); frac_.i[2] = _mm_extract_epi32(frac4, 2); frac_.i[3] = _mm_extract_epi32(frac4, 3); } pos = pos_.i[0]; frac = frac_.i[0]; for(;i < numsamples;i++) { dst[i] = resample_fir8(src[pos ], src[pos+1], src[pos+2], src[pos+3], src[pos+4], src[pos+5], src[pos+6], src[pos+7], frac); frac += increment; pos += frac>>FRACTIONBITS; frac &= FRACTIONMASK; } return dst; }