/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "alMain.h" #include "alcontext.h" #include "alSource.h" #include "alBuffer.h" #include "alListener.h" #include "alAuxEffectSlot.h" #include "sample_cvt.h" #include "alu.h" #include "alconfig.h" #include "ringbuffer.h" #include "cpu_caps.h" #include "mixer/defs.h" static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE, "MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!"); /* BSinc24 requires up to 23 extra samples before the current position, and 24 after. */ static_assert(MAX_RESAMPLE_PADDING >= 24, "MAX_RESAMPLE_PADDING must be at least 24!"); enum Resampler ResamplerDefault = LinearResampler; MixerFunc MixSamples = Mix_C; RowMixerFunc MixRowSamples = MixRow_C; static HrtfMixerFunc MixHrtfSamples = MixHrtf_C; static HrtfMixerBlendFunc MixHrtfBlendSamples = MixHrtfBlend_C; static MixerFunc SelectMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Mix_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Mix_SSE; #endif return Mix_C; } static RowMixerFunc SelectRowMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixRow_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixRow_SSE; #endif return MixRow_C; } static inline HrtfMixerFunc SelectHrtfMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtf_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtf_SSE; #endif return MixHrtf_C; } static inline HrtfMixerBlendFunc SelectHrtfBlendMixer(void) { #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return MixHrtfBlend_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return MixHrtfBlend_SSE; #endif return MixHrtfBlend_C; } ResamplerFunc SelectResampler(enum Resampler resampler) { switch(resampler) { case PointResampler: return Resample_point_C; case LinearResampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_lerp_Neon; #endif #ifdef HAVE_SSE4_1 if((CPUCapFlags&CPU_CAP_SSE4_1)) return Resample_lerp_SSE41; #endif #ifdef HAVE_SSE2 if((CPUCapFlags&CPU_CAP_SSE2)) return Resample_lerp_SSE2; #endif return Resample_lerp_C; case FIR4Resampler: return Resample_cubic_C; case BSinc12Resampler: case BSinc24Resampler: #ifdef HAVE_NEON if((CPUCapFlags&CPU_CAP_NEON)) return Resample_bsinc_Neon; #endif #ifdef HAVE_SSE if((CPUCapFlags&CPU_CAP_SSE)) return Resample_bsinc_SSE; #endif return Resample_bsinc_C; } return Resample_point_C; } void aluInitMixer(void) { const char *str; if(ConfigValueStr(NULL, NULL, "resampler", &str)) { if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0) ResamplerDefault = PointResampler; else if(strcasecmp(str, "linear") == 0) ResamplerDefault = LinearResampler; else if(strcasecmp(str, "cubic") == 0) ResamplerDefault = FIR4Resampler; else if(strcasecmp(str, "bsinc12") == 0) ResamplerDefault = BSinc12Resampler; else if(strcasecmp(str, "bsinc24") == 0) ResamplerDefault = BSinc24Resampler; else if(strcasecmp(str, "bsinc") == 0) { WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str); ResamplerDefault = BSinc12Resampler; } else if(strcasecmp(str, "sinc4") == 0 || strcasecmp(str, "sinc8") == 0) { WARN("Resampler option \"%s\" is deprecated, using cubic\n", str); ResamplerDefault = FIR4Resampler; } else { char *end; long n = strtol(str, &end, 0); if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler)) ResamplerDefault = static_cast(n); else WARN("Invalid resampler: %s\n", str); } } MixHrtfBlendSamples = SelectHrtfBlendMixer(); MixHrtfSamples = SelectHrtfMixer(); MixSamples = SelectMixer(); MixRowSamples = SelectRowMixer(); } namespace { /* Base template left undefined. Should be marked =delete, but Clang 3.8.1 * chokes on that given the inline specializations. */ template inline ALfloat LoadSample(typename FmtTypeTraits::Type val); template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return (val-128) * (1.0f/128.0f); } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return val * (1.0f/32768.0f); } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return val; } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return (ALfloat)val; } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return muLawDecompressionTable[val] * (1.0f/32768.0f); } template<> inline ALfloat LoadSample(FmtTypeTraits::Type val) { return aLawDecompressionTable[val] * (1.0f/32768.0f); } template inline void LoadSampleArray(ALfloat *RESTRICT dst, const void *src, ALint srcstep, ALsizei samples) { using SampleType = typename FmtTypeTraits::Type; const SampleType *ssrc = static_cast(src); for(ALsizei i{0};i < samples;i++) dst[i] += LoadSample(ssrc[i*srcstep]); } void LoadSamples(ALfloat *RESTRICT dst, const ALvoid *RESTRICT src, ALint srcstep, FmtType srctype, ALsizei samples) { #define HANDLE_FMT(T) \ case T: LoadSampleArray(dst, src, srcstep, samples); break switch(srctype) { HANDLE_FMT(FmtUByte); HANDLE_FMT(FmtShort); HANDLE_FMT(FmtFloat); HANDLE_FMT(FmtDouble); HANDLE_FMT(FmtMulaw); HANDLE_FMT(FmtAlaw); } #undef HANDLE_FMT } const ALfloat *DoFilters(BiquadFilter *lpfilter, BiquadFilter *hpfilter, ALfloat *RESTRICT dst, const ALfloat *RESTRICT src, ALsizei numsamples, int type) { ALsizei i; switch(type) { case AF_None: lpfilter->passthru(numsamples); hpfilter->passthru(numsamples); break; case AF_LowPass: lpfilter->process(dst, src, numsamples); hpfilter->passthru(numsamples); return dst; case AF_HighPass: lpfilter->passthru(numsamples); hpfilter->process(dst, src, numsamples); return dst; case AF_BandPass: for(i = 0;i < numsamples;) { ALfloat temp[256]; ALsizei todo = mini(256, numsamples-i); lpfilter->process(temp, src+i, todo); hpfilter->process(dst+i, temp, todo); i += todo; } return dst; } return src; } } // namespace /* This function uses these device temp buffers. */ #define SOURCE_DATA_BUF 0 #define RESAMPLED_BUF 1 #define FILTERED_BUF 2 #define NFC_DATA_BUF 3 ALboolean MixSource(ALvoice *voice, ALuint SourceID, ALCcontext *Context, ALsizei SamplesToDo) { ASSUME(SamplesToDo > 0); /* Get source info */ bool isplaying{true}; /* Will only be called while playing. */ bool isstatic{(voice->Flags&VOICE_IS_STATIC) != 0}; ALsizei DataPosInt{(ALsizei)voice->position.load(std::memory_order_acquire)}; ALsizei DataPosFrac{voice->position_fraction.load(std::memory_order_relaxed)}; ALbufferlistitem *BufferListItem{voice->current_buffer.load(std::memory_order_relaxed)}; ALbufferlistitem *BufferLoopItem{voice->loop_buffer.load(std::memory_order_relaxed)}; ALsizei NumChannels{voice->NumChannels}; ALsizei SampleSize{voice->SampleSize}; ALint increment{voice->Step}; ASSUME(DataPosInt >= 0); ASSUME(DataPosFrac >= 0); ASSUME(NumChannels > 0); ASSUME(SampleSize > 0); ASSUME(increment > 0); ALCdevice *Device{Context->Device}; ALsizei IrSize{Device->mHrtf ? Device->mHrtf->irSize : 0}; ResamplerFunc Resample{(increment == FRACTIONONE && DataPosFrac == 0) ? Resample_copy_C : voice->Resampler}; ALsizei Counter{(voice->Flags&VOICE_IS_FADING) ? SamplesToDo : 0}; ALsizei buffers_done{0}; ALsizei OutPos{0}; do { /* Figure out how many buffer samples will be needed */ ALsizei DstBufferSize{SamplesToDo - OutPos}; /* Calculate the last written dst sample pos. */ ALint64 DataSize64{DstBufferSize - 1}; /* Calculate the last read src sample pos. */ DataSize64 = (DataSize64*increment + DataPosFrac) >> FRACTIONBITS; /* +1 to get the src sample count, include padding. */ DataSize64 += 1 + MAX_RESAMPLE_PADDING*2; auto SrcBufferSize = static_cast(mini64(DataSize64, BUFFERSIZE+1)); if(SrcBufferSize > BUFFERSIZE) { SrcBufferSize = BUFFERSIZE; /* If the source buffer got saturated, we can't fill the desired * dst size. Figure out how many samples we can actually mix from * this. */ DataSize64 = SrcBufferSize - MAX_RESAMPLE_PADDING*2; DataSize64 = ((DataSize64<(mini64(DataSize64, DstBufferSize)); /* Some mixers like having a multiple of 4, so try to give that * unless this is the last update. */ if(DstBufferSize < SamplesToDo-OutPos) DstBufferSize &= ~3; } /* It's impossible to have a buffer list item with no entries. */ assert(BufferListItem->num_buffers > 0); for(ALsizei chan{0};chan < NumChannels;chan++) { ALfloat (&SrcData)[BUFFERSIZE] = Device->TempBuffer[SOURCE_DATA_BUF]; /* Load the previous samples into the source data first, and clear the rest. */ auto srciter = std::copy(std::begin(voice->PrevSamples[chan]), std::end(voice->PrevSamples[chan]), std::begin(SrcData)); std::fill(srciter, std::end(SrcData), 0.0f); auto FilledAmt = static_cast(voice->PrevSamples[chan].size()); if(isstatic) { /* TODO: For static sources, loop points are taken from the * first buffer (should be adjusted by any buffer offset, to * possibly be added later). */ const ALbuffer *Buffer0{BufferListItem->buffers[0]}; const ALsizei LoopStart{Buffer0->LoopStart}; const ALsizei LoopEnd{Buffer0->LoopEnd}; ASSUME(LoopStart >= 0); ASSUME(LoopEnd > LoopStart); /* If current pos is beyond the loop range, do not loop */ if(!BufferLoopItem || DataPosInt >= LoopEnd) { const ALsizei SizeToDo{SrcBufferSize - FilledAmt}; BufferLoopItem = nullptr; auto load_buffer = [DataPosInt,&SrcData,NumChannels,SampleSize,chan,FilledAmt,SizeToDo](ALsizei CompLen, const ALbuffer *buffer) -> ALsizei { if(DataPosInt >= buffer->SampleLen) return CompLen; /* Load what's left to play from the buffer */ const ALsizei DataSize{mini(SizeToDo, buffer->SampleLen - DataPosInt)}; CompLen = maxi(CompLen, DataSize); const ALbyte *Data{buffer->mData.data()}; LoadSamples(&SrcData[FilledAmt], &Data[(DataPosInt*NumChannels + chan)*SampleSize], NumChannels, buffer->FmtType, DataSize ); return CompLen; }; auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers; FilledAmt += std::accumulate(BufferListItem->buffers, buffers_end, ALsizei{0}, load_buffer); } else { const ALsizei SizeToDo{mini(SrcBufferSize - FilledAmt, LoopEnd - DataPosInt)}; auto load_buffer = [DataPosInt,&SrcData,NumChannels,SampleSize,chan,FilledAmt,SizeToDo](ALsizei CompLen, const ALbuffer *buffer) -> ALsizei { if(DataPosInt >= buffer->SampleLen) return CompLen; /* Load what's left of this loop iteration */ const ALsizei DataSize{mini(SizeToDo, buffer->SampleLen - DataPosInt)}; CompLen = maxi(CompLen, DataSize); const ALbyte *Data{buffer->mData.data()}; LoadSamples(&SrcData[FilledAmt], &Data[(DataPosInt*NumChannels + chan)*SampleSize], NumChannels, buffer->FmtType, DataSize ); return CompLen; }; auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers; FilledAmt = std::accumulate(BufferListItem->buffers, buffers_end, ALsizei{0}, load_buffer); const ALsizei LoopSize{LoopEnd - LoopStart}; while(SrcBufferSize > FilledAmt) { const ALsizei SizeToDo{mini(SrcBufferSize - FilledAmt, LoopSize)}; auto load_buffer_loop = [LoopStart,&SrcData,NumChannels,SampleSize,chan,FilledAmt,SizeToDo](ALsizei CompLen, const ALbuffer *buffer) -> ALsizei { if(LoopStart >= buffer->SampleLen) return CompLen; const ALsizei DataSize{mini(SizeToDo, buffer->SampleLen - LoopStart)}; CompLen = maxi(CompLen, DataSize); const ALbyte *Data{buffer->mData.data()}; LoadSamples(&SrcData[FilledAmt], &Data[(LoopStart*NumChannels + chan)*SampleSize], NumChannels, buffer->FmtType, DataSize ); return CompLen; }; FilledAmt += std::accumulate(BufferListItem->buffers, buffers_end, ALsizei{0}, load_buffer_loop); } } } else { /* Crawl the buffer queue to fill in the temp buffer */ ALbufferlistitem *tmpiter{BufferListItem}; ALsizei pos{DataPosInt}; while(tmpiter && SrcBufferSize > FilledAmt) { if(pos >= tmpiter->max_samples) { pos -= tmpiter->max_samples; tmpiter = tmpiter->next.load(std::memory_order_acquire); if(!tmpiter) tmpiter = BufferLoopItem; continue; } const ALsizei SizeToDo{SrcBufferSize - FilledAmt}; auto load_buffer = [pos,&SrcData,NumChannels,SampleSize,chan,FilledAmt,SizeToDo](ALsizei CompLen, const ALbuffer *buffer) -> ALsizei { if(!buffer) return CompLen; ALsizei DataSize{buffer->SampleLen}; if(pos >= DataSize) return CompLen; DataSize = mini(SizeToDo, DataSize - pos); CompLen = maxi(CompLen, DataSize); const ALbyte *Data{buffer->mData.data()}; Data += (pos*NumChannels + chan)*SampleSize; LoadSamples(&SrcData[FilledAmt], Data, NumChannels, buffer->FmtType, DataSize); return CompLen; }; auto buffers_end = tmpiter->buffers + tmpiter->num_buffers; FilledAmt += std::accumulate(tmpiter->buffers, buffers_end, ALsizei{0}, load_buffer); if(SrcBufferSize <= FilledAmt) break; pos = 0; tmpiter = tmpiter->next.load(std::memory_order_acquire); if(!tmpiter) tmpiter = BufferLoopItem; } } /* Store the last source samples used for next time. */ std::copy_n(&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS], voice->PrevSamples[chan].size(), std::begin(voice->PrevSamples[chan])); /* Now resample, then filter and mix to the appropriate outputs. */ const ALfloat *ResampledData{Resample(&voice->ResampleState, &SrcData[MAX_RESAMPLE_PADDING], DataPosFrac, increment, Device->TempBuffer[RESAMPLED_BUF], DstBufferSize )}; { DirectParams *parms{&voice->Direct.Params[chan]}; const ALfloat *samples{DoFilters(&parms->LowPass, &parms->HighPass, Device->TempBuffer[FILTERED_BUF], ResampledData, DstBufferSize, voice->Direct.FilterType )}; if(!(voice->Flags&VOICE_HAS_HRTF)) { if(!Counter) std::copy(std::begin(parms->Gains.Target), std::end(parms->Gains.Target), std::begin(parms->Gains.Current)); if(!(voice->Flags&VOICE_HAS_NFC)) MixSamples(samples, voice->Direct.Channels, voice->Direct.Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); else { MixSamples(samples, voice->Direct.ChannelsPerOrder[0], voice->Direct.Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); ALfloat *nfcsamples{Device->TempBuffer[NFC_DATA_BUF]}; ALsizei chanoffset{voice->Direct.ChannelsPerOrder[0]}; using FilterProc = void (NfcFilter::*)(float*,const float*,int); auto apply_nfc = [voice,parms,samples,DstBufferSize,Counter,OutPos,&chanoffset,nfcsamples](FilterProc process, ALsizei order) -> void { if(voice->Direct.ChannelsPerOrder[order] < 1) return; (parms->NFCtrlFilter.*process)(nfcsamples, samples, DstBufferSize); MixSamples(nfcsamples, voice->Direct.ChannelsPerOrder[order], voice->Direct.Buffer+chanoffset, parms->Gains.Current+chanoffset, parms->Gains.Target+chanoffset, Counter, OutPos, DstBufferSize ); chanoffset += voice->Direct.ChannelsPerOrder[order]; }; apply_nfc(&NfcFilter::process1, 1); apply_nfc(&NfcFilter::process2, 2); apply_nfc(&NfcFilter::process3, 3); } } else { const int lidx{GetChannelIdxByName(Device->RealOut, FrontLeft)}; const int ridx{GetChannelIdxByName(Device->RealOut, FrontRight)}; assert(lidx != -1 && ridx != -1); ALsizei fademix{0}; if(!Counter) { /* No fading, just overwrite the old HRTF params. */ parms->Hrtf.Old = parms->Hrtf.Target; } else if(!(parms->Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD)) { /* The old HRTF params are silent, so overwrite the old * coefficients with the new, and reset the old gain to * 0. The future mix will then fade from silence. */ parms->Hrtf.Old = parms->Hrtf.Target; parms->Hrtf.Old.Gain = 0.0f; } else if(OutPos == 0) { /* First mixing pass, fade between the coefficients. */ fademix = mini(DstBufferSize, 128); /* The new coefficients need to fade in completely * since they're replacing the old ones. To keep the * gain fading consistent, interpolate between the old * and new target gains given how much of the fade time * this mix handles. */ ALfloat gain{lerp(parms->Hrtf.Old.Gain, parms->Hrtf.Target.Gain, minf(1.0f, (ALfloat)fademix/Counter))}; MixHrtfParams hrtfparams; hrtfparams.Coeffs = parms->Hrtf.Target.Coeffs; hrtfparams.Delay[0] = parms->Hrtf.Target.Delay[0]; hrtfparams.Delay[1] = parms->Hrtf.Target.Delay[1]; hrtfparams.Gain = 0.0f; hrtfparams.GainStep = gain / (ALfloat)fademix; MixHrtfBlendSamples( voice->Direct.Buffer[lidx], voice->Direct.Buffer[ridx], samples, voice->Offset, OutPos, IrSize, &parms->Hrtf.Old, &hrtfparams, &parms->Hrtf.State, fademix ); /* Update the old parameters with the result. */ parms->Hrtf.Old = parms->Hrtf.Target; if(fademix < Counter) parms->Hrtf.Old.Gain = hrtfparams.Gain; } if(fademix < DstBufferSize) { const ALsizei todo{DstBufferSize - fademix}; ALfloat gain{parms->Hrtf.Target.Gain}; /* Interpolate the target gain if the gain fading lasts * longer than this mix. */ if(Counter > DstBufferSize) gain = lerp(parms->Hrtf.Old.Gain, gain, (ALfloat)todo/(Counter-fademix)); MixHrtfParams hrtfparams; hrtfparams.Coeffs = parms->Hrtf.Target.Coeffs; hrtfparams.Delay[0] = parms->Hrtf.Target.Delay[0]; hrtfparams.Delay[1] = parms->Hrtf.Target.Delay[1]; hrtfparams.Gain = parms->Hrtf.Old.Gain; hrtfparams.GainStep = (gain - parms->Hrtf.Old.Gain) / (ALfloat)todo; MixHrtfSamples( voice->Direct.Buffer[lidx], voice->Direct.Buffer[ridx], samples+fademix, voice->Offset+fademix, OutPos+fademix, IrSize, &hrtfparams, &parms->Hrtf.State, todo ); /* Store the interpolated gain or the final target gain * depending if the fade is done. */ if(DstBufferSize < Counter) parms->Hrtf.Old.Gain = gain; else parms->Hrtf.Old.Gain = parms->Hrtf.Target.Gain; } } } ALfloat (&FilterBuf)[BUFFERSIZE] = Device->TempBuffer[FILTERED_BUF]; auto mix_send = [Counter,OutPos,DstBufferSize,chan,ResampledData,&FilterBuf](ALvoice::SendData &send) -> void { if(!send.Buffer) return; SendParams *parms = &send.Params[chan]; const ALfloat *samples{DoFilters(&parms->LowPass, &parms->HighPass, FilterBuf, ResampledData, DstBufferSize, send.FilterType )}; if(!Counter) std::copy(std::begin(parms->Gains.Target), std::end(parms->Gains.Target), std::begin(parms->Gains.Current)); MixSamples(samples, send.Channels, send.Buffer, parms->Gains.Current, parms->Gains.Target, Counter, OutPos, DstBufferSize ); }; std::for_each(voice->Send, voice->Send+Device->NumAuxSends, mix_send); } /* Update positions */ DataPosFrac += increment*DstBufferSize; DataPosInt += DataPosFrac>>FRACTIONBITS; DataPosFrac &= FRACTIONMASK; OutPos += DstBufferSize; voice->Offset += DstBufferSize; Counter = maxi(DstBufferSize, Counter) - DstBufferSize; if(isstatic) { if(BufferLoopItem) { /* Handle looping static source */ const ALbuffer *Buffer{BufferListItem->buffers[0]}; ALsizei LoopStart{Buffer->LoopStart}; ALsizei LoopEnd{Buffer->LoopEnd}; if(DataPosInt >= LoopEnd) { assert(LoopEnd > LoopStart); DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart; } } else { /* Handle non-looping static source */ if(DataPosInt >= BufferListItem->max_samples) { isplaying = false; BufferListItem = NULL; DataPosInt = 0; DataPosFrac = 0; break; } } } else while(1) { /* Handle streaming source */ if(BufferListItem->max_samples > DataPosInt) break; DataPosInt -= BufferListItem->max_samples; buffers_done += BufferListItem->num_buffers; BufferListItem = BufferListItem->next.load(std::memory_order_relaxed); if(!BufferListItem && !(BufferListItem=BufferLoopItem)) { isplaying = false; DataPosInt = 0; DataPosFrac = 0; break; } } } while(isplaying && OutPos < SamplesToDo); voice->Flags |= VOICE_IS_FADING; /* Update source info */ voice->position.store(DataPosInt, std::memory_order_relaxed); voice->position_fraction.store(DataPosFrac, std::memory_order_relaxed); voice->current_buffer.store(BufferListItem, std::memory_order_release); /* Send any events now, after the position/buffer info was updated. */ ALbitfieldSOFT enabledevt{Context->EnabledEvts.load(std::memory_order_acquire)}; if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted)) { AsyncEvent evt{EventType_BufferCompleted}; evt.u.bufcomp.id = SourceID; evt.u.bufcomp.count = buffers_done; if(ll_ringbuffer_write(Context->AsyncEvents, &evt, 1) == 1) Context->EventSem.post(); } return isplaying; }