/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alu.h" extern inline void SetGains(const ALCdevice *device, ALfloat ingain, ALfloat gains[MaxChannels]); static void SetSpeakerArrangement(const char *name, ALCdevice *device) { char *confkey, *next; char *layout_str; char *sep, *end; enum Channel val; const char *str; ALuint i; if(!ConfigValueStr(NULL, name, &str) && !ConfigValueStr(NULL, "layout", &str)) return; layout_str = strdup(str); next = confkey = layout_str; while(next && *next) { confkey = next; next = strchr(confkey, ','); if(next) { *next = 0; do { next++; } while(isspace(*next) || *next == ','); } sep = strchr(confkey, '='); if(!sep || confkey == sep) { ERR("Malformed speaker key: %s\n", confkey); continue; } end = sep - 1; while(isspace(*end) && end != confkey) end--; *(++end) = 0; if(strcmp(confkey, "fl") == 0 || strcmp(confkey, "front-left") == 0) val = FrontLeft; else if(strcmp(confkey, "fr") == 0 || strcmp(confkey, "front-right") == 0) val = FrontRight; else if(strcmp(confkey, "fc") == 0 || strcmp(confkey, "front-center") == 0) val = FrontCenter; else if(strcmp(confkey, "bl") == 0 || strcmp(confkey, "back-left") == 0) val = BackLeft; else if(strcmp(confkey, "br") == 0 || strcmp(confkey, "back-right") == 0) val = BackRight; else if(strcmp(confkey, "bc") == 0 || strcmp(confkey, "back-center") == 0) val = BackCenter; else if(strcmp(confkey, "sl") == 0 || strcmp(confkey, "side-left") == 0) val = SideLeft; else if(strcmp(confkey, "sr") == 0 || strcmp(confkey, "side-right") == 0) val = SideRight; else { ERR("Unknown speaker for %s: \"%s\"\n", name, confkey); continue; } *(sep++) = 0; while(isspace(*sep)) sep++; for(i = 0;i < device->NumSpeakers;i++) { if(device->Speaker[i].ChanName == val) { long angle = strtol(sep, NULL, 10); if(angle >= -180 && angle <= 180) device->Speaker[i].Angle = DEG2RAD(angle); else ERR("Invalid angle for speaker \"%s\": %ld\n", confkey, angle); break; } } } free(layout_str); layout_str = NULL; for(i = 0;i < device->NumSpeakers;i++) { ALuint min = i; ALuint i2; for(i2 = i+1;i2 < device->NumSpeakers;i2++) { if(device->Speaker[i2].Angle < device->Speaker[min].Angle) min = i2; } if(min != i) { ALfloat tmpf; enum Channel tmpc; tmpf = device->Speaker[i].Angle; device->Speaker[i].Angle = device->Speaker[min].Angle; device->Speaker[min].Angle = tmpf; tmpc = device->Speaker[i].ChanName; device->Speaker[i].ChanName = device->Speaker[min].ChanName; device->Speaker[min].ChanName = tmpc; } } } void ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat gains[MaxChannels]) { ALfloat tmpgains[MaxChannels] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; enum Channel Speaker2Chan[MaxChannels]; ALfloat SpeakerAngle[MaxChannels]; ALfloat langle, rangle; ALfloat a; ALuint i; for(i = 0;i < device->NumSpeakers;i++) Speaker2Chan[i] = device->Speaker[i].ChanName; for(i = 0;i < device->NumSpeakers;i++) SpeakerAngle[i] = device->Speaker[i].Angle; /* Some easy special-cases first... */ if(device->NumSpeakers <= 1 || hwidth >= F_PI) { /* Full coverage for all speakers. */ for(i = 0;i < MaxChannels;i++) gains[i] = 0.0f; for(i = 0;i < device->NumSpeakers;i++) { enum Channel chan = Speaker2Chan[i]; gains[chan] = ingain; } return; } if(hwidth <= 0.0f) { /* Infinitely small sound point. */ for(i = 0;i < MaxChannels;i++) gains[i] = 0.0f; for(i = 0;i < device->NumSpeakers-1;i++) { if(angle >= SpeakerAngle[i] && angle < SpeakerAngle[i+1]) { /* Sound is between speakers i and i+1 */ a = (angle-SpeakerAngle[i]) / (SpeakerAngle[i+1]-SpeakerAngle[i]); gains[Speaker2Chan[i]] = sqrtf(1.0f-a) * ingain; gains[Speaker2Chan[i+1]] = sqrtf( a) * ingain; return; } } /* Sound is between last and first speakers */ if(angle < SpeakerAngle[0]) angle += F_2PI; a = (angle-SpeakerAngle[i]) / (F_2PI + SpeakerAngle[0]-SpeakerAngle[i]); gains[Speaker2Chan[i]] = sqrtf(1.0f-a) * ingain; gains[Speaker2Chan[0]] = sqrtf( a) * ingain; return; } if(fabsf(angle)+hwidth > F_PI) { /* The coverage area would go outside of -pi...+pi. Instead, rotate the * speaker angles so it would be as if angle=0, and keep them wrapped * within -pi...+pi. */ if(angle > 0.0f) { ALuint done; ALuint i = 0; while(i < device->NumSpeakers && device->Speaker[i].Angle-angle < -F_PI) i++; for(done = 0;i < device->NumSpeakers;done++) { SpeakerAngle[done] = device->Speaker[i].Angle-angle; Speaker2Chan[done] = device->Speaker[i].ChanName; i++; } for(i = 0;done < device->NumSpeakers;i++) { SpeakerAngle[done] = device->Speaker[i].Angle-angle + F_2PI; Speaker2Chan[done] = device->Speaker[i].ChanName; done++; } } else { /* NOTE: '< device->NumChan' on the iterators is correct here since * we need to handle index 0. Because the iterators are unsigned, * they'll underflow and wrap to become 0xFFFFFFFF, which will * break as expected. */ ALuint done; ALuint i = device->NumSpeakers-1; while(i < device->NumSpeakers && device->Speaker[i].Angle-angle > F_PI) i--; for(done = device->NumSpeakers-1;i < device->NumSpeakers;done--) { SpeakerAngle[done] = device->Speaker[i].Angle-angle; Speaker2Chan[done] = device->Speaker[i].ChanName; i--; } for(i = device->NumSpeakers-1;done < device->NumSpeakers;i--) { SpeakerAngle[done] = device->Speaker[i].Angle-angle - F_2PI; Speaker2Chan[done] = device->Speaker[i].ChanName; done--; } } angle = 0.0f; } langle = angle - hwidth; rangle = angle + hwidth; /* First speaker */ i = 0; do { ALuint last = device->NumSpeakers-1; enum Channel chan = Speaker2Chan[i]; if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle) { tmpgains[chan] = 1.0f; continue; } if(SpeakerAngle[i] < langle && SpeakerAngle[i+1] > langle) { a = (langle-SpeakerAngle[i]) / (SpeakerAngle[i+1]-SpeakerAngle[i]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a); } if(SpeakerAngle[i] > rangle) { a = (F_2PI + rangle-SpeakerAngle[last]) / (F_2PI + SpeakerAngle[i]-SpeakerAngle[last]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a); } else if(SpeakerAngle[last] < rangle) { a = (rangle-SpeakerAngle[last]) / (F_2PI + SpeakerAngle[i]-SpeakerAngle[last]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a); } } while(0); for(i = 1;i < device->NumSpeakers-1;i++) { enum Channel chan = Speaker2Chan[i]; if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle) { tmpgains[chan] = 1.0f; continue; } if(SpeakerAngle[i] < langle && SpeakerAngle[i+1] > langle) { a = (langle-SpeakerAngle[i]) / (SpeakerAngle[i+1]-SpeakerAngle[i]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a); } if(SpeakerAngle[i] > rangle && SpeakerAngle[i-1] < rangle) { a = (rangle-SpeakerAngle[i-1]) / (SpeakerAngle[i]-SpeakerAngle[i-1]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a); } } /* Last speaker */ i = device->NumSpeakers-1; do { enum Channel chan = Speaker2Chan[i]; if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle) { tmpgains[Speaker2Chan[i]] = 1.0f; continue; } if(SpeakerAngle[i] > rangle && SpeakerAngle[i-1] < rangle) { a = (rangle-SpeakerAngle[i-1]) / (SpeakerAngle[i]-SpeakerAngle[i-1]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a); } if(SpeakerAngle[i] < langle) { a = (langle-SpeakerAngle[i]) / (F_2PI + SpeakerAngle[0]-SpeakerAngle[i]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a); } else if(SpeakerAngle[0] > langle) { a = (F_2PI + langle-SpeakerAngle[i]) / (F_2PI + SpeakerAngle[0]-SpeakerAngle[i]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a); } } while(0); for(i = 0;i < device->NumSpeakers;i++) { enum Channel chan = device->Speaker[i].ChanName; gains[chan] = sqrtf(tmpgains[chan]) * ingain; } } ALvoid aluInitPanning(ALCdevice *device) { const char *layoutname = NULL; switch(device->FmtChans) { case DevFmtMono: device->NumSpeakers = 1; device->Speaker[0].ChanName = FrontCenter; device->Speaker[0].Angle = DEG2RAD(0.0f); layoutname = NULL; break; case DevFmtStereo: device->NumSpeakers = 2; device->Speaker[0].ChanName = FrontLeft; device->Speaker[1].ChanName = FrontRight; device->Speaker[0].Angle = DEG2RAD(-90.0f); device->Speaker[1].Angle = DEG2RAD( 90.0f); layoutname = "layout_stereo"; break; case DevFmtQuad: device->NumSpeakers = 4; device->Speaker[0].ChanName = BackLeft; device->Speaker[1].ChanName = FrontLeft; device->Speaker[2].ChanName = FrontRight; device->Speaker[3].ChanName = BackRight; device->Speaker[0].Angle = DEG2RAD(-135.0f); device->Speaker[1].Angle = DEG2RAD( -45.0f); device->Speaker[2].Angle = DEG2RAD( 45.0f); device->Speaker[3].Angle = DEG2RAD( 135.0f); layoutname = "layout_quad"; break; case DevFmtX51: device->NumSpeakers = 5; device->Speaker[0].ChanName = BackLeft; device->Speaker[1].ChanName = FrontLeft; device->Speaker[2].ChanName = FrontCenter; device->Speaker[3].ChanName = FrontRight; device->Speaker[4].ChanName = BackRight; device->Speaker[0].Angle = DEG2RAD(-110.0f); device->Speaker[1].Angle = DEG2RAD( -30.0f); device->Speaker[2].Angle = DEG2RAD( 0.0f); device->Speaker[3].Angle = DEG2RAD( 30.0f); device->Speaker[4].Angle = DEG2RAD( 110.0f); layoutname = "layout_surround51"; break; case DevFmtX51Side: device->NumSpeakers = 5; device->Speaker[0].ChanName = SideLeft; device->Speaker[1].ChanName = FrontLeft; device->Speaker[2].ChanName = FrontCenter; device->Speaker[3].ChanName = FrontRight; device->Speaker[4].ChanName = SideRight; device->Speaker[0].Angle = DEG2RAD(-90.0f); device->Speaker[1].Angle = DEG2RAD(-30.0f); device->Speaker[2].Angle = DEG2RAD( 0.0f); device->Speaker[3].Angle = DEG2RAD( 30.0f); device->Speaker[4].Angle = DEG2RAD( 90.0f); layoutname = "layout_side51"; break; case DevFmtX61: device->NumSpeakers = 6; device->Speaker[0].ChanName = SideLeft; device->Speaker[1].ChanName = FrontLeft; device->Speaker[2].ChanName = FrontCenter; device->Speaker[3].ChanName = FrontRight; device->Speaker[4].ChanName = SideRight; device->Speaker[5].ChanName = BackCenter; device->Speaker[0].Angle = DEG2RAD(-90.0f); device->Speaker[1].Angle = DEG2RAD(-30.0f); device->Speaker[2].Angle = DEG2RAD( 0.0f); device->Speaker[3].Angle = DEG2RAD( 30.0f); device->Speaker[4].Angle = DEG2RAD( 90.0f); device->Speaker[5].Angle = DEG2RAD(180.0f); layoutname = "layout_surround61"; break; case DevFmtX71: device->NumSpeakers = 7; device->Speaker[0].ChanName = BackLeft; device->Speaker[1].ChanName = SideLeft; device->Speaker[2].ChanName = FrontLeft; device->Speaker[3].ChanName = FrontCenter; device->Speaker[4].ChanName = FrontRight; device->Speaker[5].ChanName = SideRight; device->Speaker[6].ChanName = BackRight; device->Speaker[0].Angle = DEG2RAD(-150.0f); device->Speaker[1].Angle = DEG2RAD( -90.0f); device->Speaker[2].Angle = DEG2RAD( -30.0f); device->Speaker[3].Angle = DEG2RAD( 0.0f); device->Speaker[4].Angle = DEG2RAD( 30.0f); device->Speaker[5].Angle = DEG2RAD( 90.0f); device->Speaker[6].Angle = DEG2RAD( 150.0f); layoutname = "layout_surround71"; break; } if(layoutname && device->Type != Loopback) SetSpeakerArrangement(layoutname, device); }