/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "alAuxEffectSlot.h" #include "alu.h" #include "bool.h" #include "ambdec.h" #include "bformatdec.h" #include "uhjfilter.h" #include "bs2b.h" extern inline void CalcXYZCoeffs(ALfloat x, ALfloat y, ALfloat z, ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS]); static const ALsizei FuMa2ACN[MAX_AMBI_COEFFS] = { 0, /* W */ 3, /* X */ 1, /* Y */ 2, /* Z */ 6, /* R */ 7, /* S */ 5, /* T */ 8, /* U */ 4, /* V */ 12, /* K */ 13, /* L */ 11, /* M */ 14, /* N */ 10, /* O */ 15, /* P */ 9, /* Q */ }; static const ALsizei ACN2ACN[MAX_AMBI_COEFFS] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; /* NOTE: These are scale factors as applied to Ambisonics content. Decoder * coefficients should be divided by these values to get proper N3D scalings. */ static const ALfloat UnitScale[MAX_AMBI_COEFFS] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }; static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = { 1.000000000f, /* ACN 0 (W), sqrt(1) */ 1.732050808f, /* ACN 1 (Y), sqrt(3) */ 1.732050808f, /* ACN 2 (Z), sqrt(3) */ 1.732050808f, /* ACN 3 (X), sqrt(3) */ 2.236067978f, /* ACN 4 (V), sqrt(5) */ 2.236067978f, /* ACN 5 (T), sqrt(5) */ 2.236067978f, /* ACN 6 (R), sqrt(5) */ 2.236067978f, /* ACN 7 (S), sqrt(5) */ 2.236067978f, /* ACN 8 (U), sqrt(5) */ 2.645751311f, /* ACN 9 (Q), sqrt(7) */ 2.645751311f, /* ACN 10 (O), sqrt(7) */ 2.645751311f, /* ACN 11 (M), sqrt(7) */ 2.645751311f, /* ACN 12 (K), sqrt(7) */ 2.645751311f, /* ACN 13 (L), sqrt(7) */ 2.645751311f, /* ACN 14 (N), sqrt(7) */ 2.645751311f, /* ACN 15 (P), sqrt(7) */ }; static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = { 1.414213562f, /* ACN 0 (W), sqrt(2) */ 1.732050808f, /* ACN 1 (Y), sqrt(3) */ 1.732050808f, /* ACN 2 (Z), sqrt(3) */ 1.732050808f, /* ACN 3 (X), sqrt(3) */ 1.936491673f, /* ACN 4 (V), sqrt(15)/2 */ 1.936491673f, /* ACN 5 (T), sqrt(15)/2 */ 2.236067978f, /* ACN 6 (R), sqrt(5) */ 1.936491673f, /* ACN 7 (S), sqrt(15)/2 */ 1.936491673f, /* ACN 8 (U), sqrt(15)/2 */ 2.091650066f, /* ACN 9 (Q), sqrt(35/8) */ 1.972026594f, /* ACN 10 (O), sqrt(35)/3 */ 2.231093404f, /* ACN 11 (M), sqrt(224/45) */ 2.645751311f, /* ACN 12 (K), sqrt(7) */ 2.231093404f, /* ACN 13 (L), sqrt(224/45) */ 1.972026594f, /* ACN 14 (N), sqrt(35)/3 */ 2.091650066f, /* ACN 15 (P), sqrt(35/8) */ }; void CalcDirectionCoeffs(const ALfloat dir[3], ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS]) { /* Convert from OpenAL coords to Ambisonics. */ ALfloat x = -dir[2]; ALfloat y = -dir[0]; ALfloat z = dir[1]; /* Zeroth-order */ coeffs[0] = 1.0f; /* ACN 0 = 1 */ /* First-order */ coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */ coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */ coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */ /* Second-order */ coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */ coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */ coeffs[6] = 1.118033989f * (3.0f*z*z - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */ coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */ coeffs[8] = 1.936491673f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */ /* Third-order */ coeffs[9] = 2.091650066f * y * (3.0f*x*x - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */ coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */ coeffs[11] = 1.620185175f * y * (5.0f*z*z - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */ coeffs[12] = 1.322875656f * z * (5.0f*z*z - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */ coeffs[13] = 1.620185175f * x * (5.0f*z*z - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */ coeffs[14] = 5.123475383f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */ coeffs[15] = 2.091650066f * x * (x*x - 3.0f*y*y); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */ if(spread > 0.0f) { /* Implement the spread by using a spherical source that subtends the * angle spread. See: * http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3 * * When adjusted for N3D normalization instead of SN3D, these * calculations are: * * ZH0 = -sqrt(pi) * (-1+ca); * ZH1 = 0.5*sqrt(pi) * sa*sa; * ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1); * ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1); * ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3); * ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1); * * The gain of the source is compensated for size, so that the * loundness doesn't depend on the spread. That is, the factors are * scaled so that ZH0 remains 1 regardless of the spread. Thus: * * ZH0 = 1.0f; * ZH1 = 0.5f * (ca+1.0f); * ZH2 = 0.5f * (ca+1.0f)*ca; * ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f); * ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca; * ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f); */ ALfloat ca = cosf(spread * 0.5f); ALfloat ZH0_norm = 1.0f; ALfloat ZH1_norm = 0.5f * (ca+1.f); ALfloat ZH2_norm = 0.5f * (ca+1.f)*ca; ALfloat ZH3_norm = 0.125f * (ca+1.f)*(5.f*ca*ca-1.f); /* Zeroth-order */ coeffs[0] *= ZH0_norm; /* First-order */ coeffs[1] *= ZH1_norm; coeffs[2] *= ZH1_norm; coeffs[3] *= ZH1_norm; /* Second-order */ coeffs[4] *= ZH2_norm; coeffs[5] *= ZH2_norm; coeffs[6] *= ZH2_norm; coeffs[7] *= ZH2_norm; coeffs[8] *= ZH2_norm; /* Third-order */ coeffs[9] *= ZH3_norm; coeffs[10] *= ZH3_norm; coeffs[11] *= ZH3_norm; coeffs[12] *= ZH3_norm; coeffs[13] *= ZH3_norm; coeffs[14] *= ZH3_norm; coeffs[15] *= ZH3_norm; } } void CalcAngleCoeffs(ALfloat azimuth, ALfloat elevation, ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS]) { ALfloat dir[3] = { sinf(azimuth) * cosf(elevation), sinf(elevation), -cosf(azimuth) * cosf(elevation) }; CalcDirectionCoeffs(dir, spread, coeffs); } void ComputeAmbientGainsMC(const ChannelConfig *chancoeffs, ALsizei numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALsizei i; for(i = 0;i < numchans;i++) gains[i] = chancoeffs[i][0] * 1.414213562f * ingain; for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputeAmbientGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALfloat gain = 0.0f; ALsizei i; for(i = 0;i < numchans;i++) { if(chanmap[i].Index == 0) gain += chanmap[i].Scale; } gains[0] = gain * 1.414213562f * ingain; for(i = 1;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputePanningGainsMC(const ChannelConfig *chancoeffs, ALsizei numchans, ALsizei numcoeffs, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALsizei i, j; for(i = 0;i < numchans;i++) { float gain = 0.0f; for(j = 0;j < numcoeffs;j++) gain += chancoeffs[i][j]*coeffs[j]; gains[i] = gain * ingain; } for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputePanningGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALsizei i; for(i = 0;i < numchans;i++) gains[i] = chanmap[i].Scale * coeffs[chanmap[i].Index] * ingain; for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputeFirstOrderGainsMC(const ChannelConfig *chancoeffs, ALsizei numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALsizei i, j; for(i = 0;i < numchans;i++) { float gain = 0.0f; for(j = 0;j < 4;j++) gain += chancoeffs[i][j] * mtx[j]; gains[i] = gain * ingain; } for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputeFirstOrderGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALsizei i; for(i = 0;i < numchans;i++) gains[i] = chanmap[i].Scale * mtx[chanmap[i].Index] * ingain; for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } static inline const char *GetLabelFromChannel(enum Channel channel) { switch(channel) { case FrontLeft: return "front-left"; case FrontRight: return "front-right"; case FrontCenter: return "front-center"; case LFE: return "lfe"; case BackLeft: return "back-left"; case BackRight: return "back-right"; case BackCenter: return "back-center"; case SideLeft: return "side-left"; case SideRight: return "side-right"; case UpperFrontLeft: return "upper-front-left"; case UpperFrontRight: return "upper-front-right"; case UpperBackLeft: return "upper-back-left"; case UpperBackRight: return "upper-back-right"; case LowerFrontLeft: return "lower-front-left"; case LowerFrontRight: return "lower-front-right"; case LowerBackLeft: return "lower-back-left"; case LowerBackRight: return "lower-back-right"; case Aux0: return "aux-0"; case Aux1: return "aux-1"; case Aux2: return "aux-2"; case Aux3: return "aux-3"; case Aux4: return "aux-4"; case Aux5: return "aux-5"; case Aux6: return "aux-6"; case Aux7: return "aux-7"; case Aux8: return "aux-8"; case Aux9: return "aux-9"; case Aux10: return "aux-10"; case Aux11: return "aux-11"; case Aux12: return "aux-12"; case Aux13: return "aux-13"; case Aux14: return "aux-14"; case Aux15: return "aux-15"; case InvalidChannel: break; } return "(unknown)"; } typedef struct ChannelMap { enum Channel ChanName; ChannelConfig Config; } ChannelMap; static void SetChannelMap(const enum Channel *devchans, ChannelConfig *ambicoeffs, const ChannelMap *chanmap, size_t count, ALsizei *outcount) { size_t j, k; ALsizei i; for(i = 0;i < MAX_OUTPUT_CHANNELS && devchans[i] != InvalidChannel;i++) { if(devchans[i] == LFE) { for(j = 0;j < MAX_AMBI_COEFFS;j++) ambicoeffs[i][j] = 0.0f; continue; } for(j = 0;j < count;j++) { if(devchans[i] != chanmap[j].ChanName) continue; for(k = 0;k < MAX_AMBI_COEFFS;++k) ambicoeffs[i][k] = chanmap[j].Config[k]; break; } if(j == count) ERR("Failed to match %s channel (%u) in channel map\n", GetLabelFromChannel(devchans[i]), i); } *outcount = i; } static bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALsizei speakermap[MAX_OUTPUT_CHANNELS]) { ALsizei i; for(i = 0;i < conf->NumSpeakers;i++) { int c = -1; /* NOTE: AmbDec does not define any standard speaker names, however * for this to work we have to by able to find the output channel * the speaker definition corresponds to. Therefore, OpenAL Soft * requires these channel labels to be recognized: * * LF = Front left * RF = Front right * LS = Side left * RS = Side right * LB = Back left * RB = Back right * CE = Front center * CB = Back center * * Additionally, surround51 will acknowledge back speakers for side * channels, and surround51rear will acknowledge side speakers for * back channels, to avoid issues with an ambdec expecting 5.1 to * use the side channels when the device is configured for back, * and vice-versa. */ if(al_string_cmp_cstr(conf->Speakers[i].Name, "LF") == 0) c = GetChannelIdxByName(device->RealOut, FrontLeft); else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RF") == 0) c = GetChannelIdxByName(device->RealOut, FrontRight); else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CE") == 0) c = GetChannelIdxByName(device->RealOut, FrontCenter); else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LS") == 0) { if(device->FmtChans == DevFmtX51Rear) c = GetChannelIdxByName(device->RealOut, BackLeft); else c = GetChannelIdxByName(device->RealOut, SideLeft); } else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RS") == 0) { if(device->FmtChans == DevFmtX51Rear) c = GetChannelIdxByName(device->RealOut, BackRight); else c = GetChannelIdxByName(device->RealOut, SideRight); } else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LB") == 0) { if(device->FmtChans == DevFmtX51) c = GetChannelIdxByName(device->RealOut, SideLeft); else c = GetChannelIdxByName(device->RealOut, BackLeft); } else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RB") == 0) { if(device->FmtChans == DevFmtX51) c = GetChannelIdxByName(device->RealOut, SideRight); else c = GetChannelIdxByName(device->RealOut, BackRight); } else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CB") == 0) c = GetChannelIdxByName(device->RealOut, BackCenter); else { const char *name = al_string_get_cstr(conf->Speakers[i].Name); unsigned int n; char ch; if(sscanf(name, "AUX%u%c", &n, &ch) == 1 && n < 16) c = GetChannelIdxByName(device->RealOut, Aux0+n); else { ERR("AmbDec speaker label \"%s\" not recognized\n", name); return false; } } if(c == -1) { ERR("Failed to lookup AmbDec speaker label %s\n", al_string_get_cstr(conf->Speakers[i].Name)); return false; } speakermap[i] = c; } return true; } static const ChannelMap MonoCfg[1] = { { FrontCenter, { 1.0f } }, }, StereoCfg[2] = { { FrontLeft, { 5.00000000e-1f, 2.88675135e-1f, 0.0f, 0.00000000e+0f } }, { FrontRight, { 5.00000000e-1f, -2.88675135e-1f, 0.0f, 0.00000000e+0f } }, }, QuadCfg[4] = { { BackLeft, { 3.53553391e-1f, 2.04124145e-1f, 0.0f, -2.04124145e-1f } }, { FrontLeft, { 3.53553391e-1f, 2.04124145e-1f, 0.0f, 2.04124145e-1f } }, { FrontRight, { 3.53553391e-1f, -2.04124145e-1f, 0.0f, 2.04124145e-1f } }, { BackRight, { 3.53553391e-1f, -2.04124145e-1f, 0.0f, -2.04124145e-1f } }, }, X51SideCfg[5] = { { SideLeft, { 3.33001372e-1f, 1.89085671e-1f, 0.0f, -2.00041334e-1f, -2.12309737e-2f, 0.0f, 0.0f, 0.0f, -1.14573483e-2f } }, { FrontLeft, { 1.47751298e-1f, 1.28994110e-1f, 0.0f, 1.15190495e-1f, 7.44949143e-2f, 0.0f, 0.0f, 0.0f, -6.47739980e-3f } }, { FrontCenter, { 7.73595729e-2f, 0.00000000e+0f, 0.0f, 9.71390298e-2f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, 5.18625335e-2f } }, { FrontRight, { 1.47751298e-1f, -1.28994110e-1f, 0.0f, 1.15190495e-1f, -7.44949143e-2f, 0.0f, 0.0f, 0.0f, -6.47739980e-3f } }, { SideRight, { 3.33001372e-1f, -1.89085671e-1f, 0.0f, -2.00041334e-1f, 2.12309737e-2f, 0.0f, 0.0f, 0.0f, -1.14573483e-2f } }, }, X51RearCfg[5] = { { BackLeft, { 3.33001372e-1f, 1.89085671e-1f, 0.0f, -2.00041334e-1f, -2.12309737e-2f, 0.0f, 0.0f, 0.0f, -1.14573483e-2f } }, { FrontLeft, { 1.47751298e-1f, 1.28994110e-1f, 0.0f, 1.15190495e-1f, 7.44949143e-2f, 0.0f, 0.0f, 0.0f, -6.47739980e-3f } }, { FrontCenter, { 7.73595729e-2f, 0.00000000e+0f, 0.0f, 9.71390298e-2f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, 5.18625335e-2f } }, { FrontRight, { 1.47751298e-1f, -1.28994110e-1f, 0.0f, 1.15190495e-1f, -7.44949143e-2f, 0.0f, 0.0f, 0.0f, -6.47739980e-3f } }, { BackRight, { 3.33001372e-1f, -1.89085671e-1f, 0.0f, -2.00041334e-1f, 2.12309737e-2f, 0.0f, 0.0f, 0.0f, -1.14573483e-2f } }, }, X61Cfg[6] = { { SideLeft, { 2.04462744e-1f, 2.17178497e-1f, 0.0f, -4.39990188e-2f, -2.60787329e-2f, 0.0f, 0.0f, 0.0f, -6.87238843e-2f } }, { FrontLeft, { 1.18130342e-1f, 9.34633906e-2f, 0.0f, 1.08553749e-1f, 6.80658795e-2f, 0.0f, 0.0f, 0.0f, 1.08999485e-2f } }, { FrontCenter, { 7.73595729e-2f, 0.00000000e+0f, 0.0f, 9.71390298e-2f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, 5.18625335e-2f } }, { FrontRight, { 1.18130342e-1f, -9.34633906e-2f, 0.0f, 1.08553749e-1f, -6.80658795e-2f, 0.0f, 0.0f, 0.0f, 1.08999485e-2f } }, { SideRight, { 2.04462744e-1f, -2.17178497e-1f, 0.0f, -4.39990188e-2f, 2.60787329e-2f, 0.0f, 0.0f, 0.0f, -6.87238843e-2f } }, { BackCenter, { 2.50001688e-1f, 0.00000000e+0f, 0.0f, -2.50000094e-1f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, 6.05133395e-2f } }, }, X71Cfg[6] = { { BackLeft, { 2.04124145e-1f, 1.08880247e-1f, 0.0f, -1.88586120e-1f, -1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { SideLeft, { 2.04124145e-1f, 2.17760495e-1f, 0.0f, 0.00000000e+0f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, -1.49071198e-1f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { FrontLeft, { 2.04124145e-1f, 1.08880247e-1f, 0.0f, 1.88586120e-1f, 1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { FrontRight, { 2.04124145e-1f, -1.08880247e-1f, 0.0f, 1.88586120e-1f, -1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { SideRight, { 2.04124145e-1f, -2.17760495e-1f, 0.0f, 0.00000000e+0f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, -1.49071198e-1f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, { BackRight, { 2.04124145e-1f, -1.08880247e-1f, 0.0f, -1.88586120e-1f, 1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } }, }; static void InitPanning(ALCdevice *device) { const ChannelMap *chanmap = NULL; ALsizei coeffcount = 0; ALsizei count = 0; ALsizei i, j; switch(device->FmtChans) { case DevFmtMono: count = COUNTOF(MonoCfg); chanmap = MonoCfg; coeffcount = 1; break; case DevFmtStereo: count = COUNTOF(StereoCfg); chanmap = StereoCfg; coeffcount = 4; break; case DevFmtQuad: count = COUNTOF(QuadCfg); chanmap = QuadCfg; coeffcount = 4; break; case DevFmtX51: count = COUNTOF(X51SideCfg); chanmap = X51SideCfg; coeffcount = 9; break; case DevFmtX51Rear: count = COUNTOF(X51RearCfg); chanmap = X51RearCfg; coeffcount = 9; break; case DevFmtX61: count = COUNTOF(X61Cfg); chanmap = X61Cfg; coeffcount = 9; break; case DevFmtX71: count = COUNTOF(X71Cfg); chanmap = X71Cfg; coeffcount = 16; break; case DevFmtAmbi1: case DevFmtAmbi2: case DevFmtAmbi3: break; } if(device->FmtChans >= DevFmtAmbi1 && device->FmtChans <= DevFmtAmbi3) { const ALsizei *acnmap = (device->AmbiFmt == AmbiFormat_FuMa) ? FuMa2ACN : ACN2ACN; const ALfloat *n3dscale = (device->AmbiFmt == AmbiFormat_FuMa) ? FuMa2N3DScale : (device->AmbiFmt == AmbiFormat_ACN_SN3D) ? SN3D2N3DScale : /*(device->AmbiFmt == AmbiFormat_ACN_N3D) ?*/ UnitScale; count = (device->FmtChans == DevFmtAmbi3) ? 16 : (device->FmtChans == DevFmtAmbi2) ? 9 : (device->FmtChans == DevFmtAmbi1) ? 4 : 1; for(i = 0;i < count;i++) { ALsizei acn = acnmap[i]; device->Dry.Ambi.Map[i].Scale = 1.0f/n3dscale[acn]; device->Dry.Ambi.Map[i].Index = acn; } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; if(device->FmtChans == DevFmtAmbi1) { device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; device->FOAOut.NumChannels = 0; } else { /* FOA output is always ACN+N3D for higher-order ambisonic output. * The upsampler expects this and will convert it for output. */ memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); for(i = 0;i < 4;i++) { device->FOAOut.Ambi.Map[i].Scale = 1.0f; device->FOAOut.Ambi.Map[i].Index = i; } device->FOAOut.CoeffCount = 0; device->FOAOut.NumChannels = 4; ambiup_reset(device->AmbiUp, device); } } else { ALfloat w_scale, xyz_scale; SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs, chanmap, count, &device->Dry.NumChannels); device->Dry.CoeffCount = coeffcount; w_scale = (device->Dry.CoeffCount > 9) ? W_SCALE2D_THIRD : (device->Dry.CoeffCount > 4) ? W_SCALE2D_SECOND : 1.0f; xyz_scale = (device->Dry.CoeffCount > 9) ? XYZ_SCALE2D_THIRD : (device->Dry.CoeffCount > 4) ? XYZ_SCALE2D_SECOND : 1.0f; memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); for(i = 0;i < device->Dry.NumChannels;i++) { device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0] * w_scale; for(j = 1;j < 4;j++) device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * xyz_scale; } device->FOAOut.CoeffCount = 4; device->FOAOut.NumChannels = 0; } device->RealOut.NumChannels = 0; } static void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf, const ALsizei speakermap[MAX_OUTPUT_CHANNELS]) { const char *devname = al_string_get_cstr(device->DeviceName); ALfloat maxdist = 0.0f; ALsizei i; for(i = 0;i < conf->NumSpeakers;i++) maxdist = maxf(maxdist, conf->Speakers[i].Distance); if(GetConfigValueBool(devname, "decoder", "distance-comp", 1) && maxdist > 0.0f) { ALfloat srate = (ALfloat)device->Frequency; for(i = 0;i < conf->NumSpeakers;i++) { ALsizei chan = speakermap[i]; ALfloat delay; /* Distance compensation only delays in steps of the sample rate. * This is a bit less accurate since the delay time falls to the * nearest sample time, but it's far simpler as it doesn't have to * deal with phase offsets. This means at 48khz, for instance, the * distance delay will be in steps of about 7 millimeters. */ delay = floorf((maxdist-conf->Speakers[i].Distance) / SPEEDOFSOUNDMETRESPERSEC * srate + 0.5f); if(delay >= (ALfloat)MAX_DELAY_LENGTH) ERR("Delay for speaker \"%s\" exceeds buffer length (%f >= %u)\n", al_string_get_cstr(conf->Speakers[i].Name), delay, MAX_DELAY_LENGTH); device->ChannelDelay[chan].Length = (ALsizei)clampf( delay, 0.0f, (ALfloat)(MAX_DELAY_LENGTH-1) ); device->ChannelDelay[chan].Gain = conf->Speakers[i].Distance / maxdist; TRACE("Channel %u \"%s\" distance compensation: %d samples, %f gain\n", chan, al_string_get_cstr(conf->Speakers[i].Name), device->ChannelDelay[chan].Length, device->ChannelDelay[chan].Gain ); } } } static void InitCustomPanning(ALCdevice *device, const AmbDecConf *conf, const ALsizei speakermap[MAX_OUTPUT_CHANNELS]) { ChannelMap chanmap[MAX_OUTPUT_CHANNELS]; const ALfloat *coeff_scale = UnitScale; ALfloat w_scale = 1.0f; ALfloat xyz_scale = 1.0f; ALsizei i, j; if(conf->FreqBands != 1) ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n", conf->XOverFreq); if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { if(conf->ChanMask > 0x1ff) { w_scale = W_SCALE3D_THIRD; xyz_scale = XYZ_SCALE3D_THIRD; } else if(conf->ChanMask > 0xf) { w_scale = W_SCALE3D_SECOND; xyz_scale = XYZ_SCALE3D_SECOND; } } else { if(conf->ChanMask > 0x1ff) { w_scale = W_SCALE2D_THIRD; xyz_scale = XYZ_SCALE2D_THIRD; } else if(conf->ChanMask > 0xf) { w_scale = W_SCALE2D_SECOND; xyz_scale = XYZ_SCALE2D_SECOND; } } if(conf->CoeffScale == ADS_SN3D) coeff_scale = SN3D2N3DScale; else if(conf->CoeffScale == ADS_FuMa) coeff_scale = FuMa2N3DScale; for(i = 0;i < conf->NumSpeakers;i++) { ALsizei chan = speakermap[i]; ALfloat gain; ALsizei k = 0; for(j = 0;j < MAX_AMBI_COEFFS;j++) chanmap[i].Config[j] = 0.0f; chanmap[i].ChanName = device->RealOut.ChannelName[chan]; for(j = 0;j < MAX_AMBI_COEFFS;j++) { if(j == 0) gain = conf->HFOrderGain[0]; else if(j == 1) gain = conf->HFOrderGain[1]; else if(j == 4) gain = conf->HFOrderGain[2]; else if(j == 9) gain = conf->HFOrderGain[3]; if((conf->ChanMask&(1<HFMatrix[i][k++] / coeff_scale[j] * gain; } } SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs, chanmap, conf->NumSpeakers, &device->Dry.NumChannels); device->Dry.CoeffCount = (conf->ChanMask > 0x1ff) ? 16 : (conf->ChanMask > 0xf) ? 9 : 4; memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); for(i = 0;i < device->Dry.NumChannels;i++) { device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0] * w_scale; for(j = 1;j < 4;j++) device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * xyz_scale; } device->FOAOut.CoeffCount = 4; device->FOAOut.NumChannels = 0; device->RealOut.NumChannels = 0; InitDistanceComp(device, conf, speakermap); } static void InitHQPanning(ALCdevice *device, const AmbDecConf *conf, const ALsizei speakermap[MAX_OUTPUT_CHANNELS]) { size_t count; size_t i; if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { count = (conf->ChanMask > 0x1ff) ? 16 : (conf->ChanMask > 0xf) ? 9 : 4; for(i = 0;i < count;i++) { device->Dry.Ambi.Map[i].Scale = 1.0f; device->Dry.Ambi.Map[i].Index = i; } } else { static const int map[MAX_AMBI2D_COEFFS] = { 0, 1, 3, 4, 8, 9, 15 }; count = (conf->ChanMask > 0x1ff) ? 7 : (conf->ChanMask > 0xf) ? 5 : 3; for(i = 0;i < count;i++) { device->Dry.Ambi.Map[i].Scale = 1.0f; device->Dry.Ambi.Map[i].Index = map[i]; } } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; TRACE("Enabling %s-band %s-order%s ambisonic decoder\n", (conf->FreqBands == 1) ? "single" : "dual", (conf->ChanMask > 0xf) ? (conf->ChanMask > 0x1ff) ? "third" : "second" : "first", (conf->ChanMask&AMBI_PERIPHONIC_MASK) ? " periphonic" : "" ); bformatdec_reset(device->AmbiDecoder, conf, count, device->Frequency, speakermap); if(bformatdec_getOrder(device->AmbiDecoder) < 2) { device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; device->FOAOut.NumChannels = 0; } else { memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { count = 4; for(i = 0;i < count;i++) { device->FOAOut.Ambi.Map[i].Scale = 1.0f; device->FOAOut.Ambi.Map[i].Index = i; } } else { static const int map[3] = { 0, 1, 3 }; count = 3; for(i = 0;i < count;i++) { device->FOAOut.Ambi.Map[i].Scale = 1.0f; device->FOAOut.Ambi.Map[i].Index = map[i]; } } device->FOAOut.CoeffCount = 0; device->FOAOut.NumChannels = count; } device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans); InitDistanceComp(device, conf, speakermap); } static void InitHrtfPanning(ALCdevice *device, bool hoa_mode) { /* NOTE: azimuth goes clockwise. */ static const ALfloat AmbiPoints[][2] = { { DEG2RAD( 90.0f), DEG2RAD( 0.0f) }, { DEG2RAD( 35.0f), DEG2RAD( -45.0f) }, { DEG2RAD( 35.0f), DEG2RAD( 45.0f) }, { DEG2RAD( 35.0f), DEG2RAD( 135.0f) }, { DEG2RAD( 35.0f), DEG2RAD(-135.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 0.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 90.0f) }, { DEG2RAD( 0.0f), DEG2RAD( 180.0f) }, { DEG2RAD( 0.0f), DEG2RAD( -90.0f) }, { DEG2RAD(-35.0f), DEG2RAD( -45.0f) }, { DEG2RAD(-35.0f), DEG2RAD( 45.0f) }, { DEG2RAD(-35.0f), DEG2RAD( 135.0f) }, { DEG2RAD(-35.0f), DEG2RAD(-135.0f) }, { DEG2RAD(-90.0f), DEG2RAD( 0.0f) }, }; static const ALfloat AmbiMatrixFOA[][2][MAX_AMBI_COEFFS] = { { { 1.88982237e-001f, 0.00000000e+000f, 1.90399923e-001f, 0.00000000e+000f }, { 7.14285714e-002f, 0.00000000e+000f, 1.24646009e-001f, 0.00000000e+000f } }, { { 1.88982237e-001f, 1.09057783e-001f, 1.09208910e-001f, 1.09057783e-001f }, { 7.14285714e-002f, 7.13950780e-002f, 7.14940135e-002f, 7.13950780e-002f } }, { { 1.88982237e-001f, -1.09057783e-001f, 1.09208910e-001f, 1.09057783e-001f }, { 7.14285714e-002f, -7.13950780e-002f, 7.14940135e-002f, 7.13950780e-002f } }, { { 1.88982237e-001f, -1.09057783e-001f, 1.09208910e-001f, -1.09057783e-001f }, { 7.14285714e-002f, -7.13950780e-002f, 7.14940135e-002f, -7.13950780e-002f } }, { { 1.88982237e-001f, 1.09057783e-001f, 1.09208910e-001f, -1.09057783e-001f }, { 7.14285714e-002f, 7.13950780e-002f, 7.14940135e-002f, -7.13950780e-002f } }, { { 1.88982237e-001f, 0.00000000e+000f, 0.00000000e+000f, 1.88281281e-001f }, { 7.14285714e-002f, 0.00000000e+000f, 0.00000000e+000f, 1.23259031e-001f } }, { { 1.88982237e-001f, -1.88281281e-001f, 0.00000000e+000f, 0.00000000e+000f }, { 7.14285714e-002f, -1.23259031e-001f, 0.00000000e+000f, 0.00000000e+000f } }, { { 1.88982237e-001f, 0.00000000e+000f, 0.00000000e+000f, -1.88281281e-001f }, { 7.14285714e-002f, 0.00000000e+000f, 0.00000000e+000f, -1.23259031e-001f } }, { { 1.88982237e-001f, 1.88281281e-001f, 0.00000000e+000f, 0.00000000e+000f }, { 7.14285714e-002f, 1.23259031e-001f, 0.00000000e+000f, 0.00000000e+000f } }, { { 1.88982237e-001f, 1.09057783e-001f, -1.09208910e-001f, 1.09057783e-001f }, { 7.14285714e-002f, 7.13950780e-002f, -7.14940135e-002f, 7.13950780e-002f } }, { { 1.88982237e-001f, -1.09057783e-001f, -1.09208910e-001f, 1.09057783e-001f }, { 7.14285714e-002f, -7.13950780e-002f, -7.14940135e-002f, 7.13950780e-002f } }, { { 1.88982237e-001f, -1.09057783e-001f, -1.09208910e-001f, -1.09057783e-001f }, { 7.14285714e-002f, -7.13950780e-002f, -7.14940135e-002f, -7.13950780e-002f } }, { { 1.88982237e-001f, 1.09057783e-001f, -1.09208910e-001f, -1.09057783e-001f }, { 7.14285714e-002f, 7.13950780e-002f, -7.14940135e-002f, -7.13950780e-002f } }, { { 1.88982237e-001f, 0.00000000e+000f, -1.90399923e-001f, 0.00000000e+000f }, { 7.14285714e-002f, 0.00000000e+000f, -1.24646009e-001f, 0.00000000e+000f } } }, AmbiMatrixHOA[][2][MAX_AMBI_COEFFS] = { { { 1.43315266e-001f, 0.00000000e+000f, 1.90399923e-001f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, 1.18020996e-001f, 0.00000000e+000f, 0.00000000e+000f }, { 7.26741039e-002f, 0.00000000e+000f, 1.24646009e-001f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, 1.49618920e-001f, 0.00000000e+000f, 0.00000000e+000f } }, { { 1.40852210e-001f, 1.09057783e-001f, 1.09208910e-001f, 1.09057783e-001f, 7.58818830e-002f, 7.66295578e-002f, -3.28314629e-004f, 7.66295578e-002f, 0.00000000e+000f }, { 7.14251066e-002f, 7.13950780e-002f, 7.14940135e-002f, 7.13950780e-002f, 9.61978444e-002f, 9.71456952e-002f, -4.16214759e-004f, 9.71456952e-002f, 0.00000000e+000f } }, { { 1.40852210e-001f, -1.09057783e-001f, 1.09208910e-001f, 1.09057783e-001f, -7.58818830e-002f, -7.66295578e-002f, -3.28314629e-004f, 7.66295578e-002f, 0.00000000e+000f }, { 7.14251066e-002f, -7.13950780e-002f, 7.14940135e-002f, 7.13950780e-002f, -9.61978444e-002f, -9.71456952e-002f, -4.16214759e-004f, 9.71456952e-002f, 0.00000000e+000f } }, { { 1.40852210e-001f, -1.09057783e-001f, 1.09208910e-001f, -1.09057783e-001f, 7.58818830e-002f, -7.66295578e-002f, -3.28314629e-004f, -7.66295578e-002f, 0.00000000e+000f }, { 7.14251066e-002f, -7.13950780e-002f, 7.14940135e-002f, -7.13950780e-002f, 9.61978444e-002f, -9.71456952e-002f, -4.16214759e-004f, -9.71456952e-002f, 0.00000000e+000f } }, { { 1.40852210e-001f, 1.09057783e-001f, 1.09208910e-001f, -1.09057783e-001f, -7.58818830e-002f, 7.66295578e-002f, -3.28314629e-004f, -7.66295578e-002f, 0.00000000e+000f }, { 7.14251066e-002f, 7.13950780e-002f, 7.14940135e-002f, -7.13950780e-002f, -9.61978444e-002f, 9.71456952e-002f, -4.16214759e-004f, -9.71456952e-002f, 0.00000000e+000f } }, { { 1.39644596e-001f, 0.00000000e+000f, 0.00000000e+000f, 1.88281281e-001f, 0.00000000e+000f, 0.00000000e+000f, -5.83538687e-002f, 0.00000000e+000f, 1.01835015e-001f }, { 7.08127349e-002f, 0.00000000e+000f, 0.00000000e+000f, 1.23259031e-001f, 0.00000000e+000f, 0.00000000e+000f, -7.39770307e-002f, 0.00000000e+000f, 1.29099445e-001f } }, { { 1.39644596e-001f, -1.88281281e-001f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, -5.83538687e-002f, 0.00000000e+000f, -1.01835015e-001f }, { 7.08127349e-002f, -1.23259031e-001f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, -7.39770307e-002f, 0.00000000e+000f, -1.29099445e-001f } }, { { 1.39644596e-001f, 0.00000000e+000f, 0.00000000e+000f, -1.88281281e-001f, 0.00000000e+000f, 0.00000000e+000f, -5.83538687e-002f, 0.00000000e+000f, 1.01835015e-001f }, { 7.08127349e-002f, 0.00000000e+000f, 0.00000000e+000f, -1.23259031e-001f, 0.00000000e+000f, 0.00000000e+000f, -7.39770307e-002f, 0.00000000e+000f, 1.29099445e-001f } }, { { 1.39644596e-001f, 1.88281281e-001f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, -5.83538687e-002f, 0.00000000e+000f, -1.01835015e-001f }, { 7.08127349e-002f, 1.23259031e-001f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, -7.39770307e-002f, 0.00000000e+000f, -1.29099445e-001f } }, { { 1.40852210e-001f, 1.09057783e-001f, -1.09208910e-001f, 1.09057783e-001f, 7.58818830e-002f, -7.66295578e-002f, -3.28314629e-004f, -7.66295578e-002f, 0.00000000e+000f }, { 7.14251066e-002f, 7.13950780e-002f, -7.14940135e-002f, 7.13950780e-002f, 9.61978444e-002f, -9.71456952e-002f, -4.16214759e-004f, -9.71456952e-002f, 0.00000000e+000f } }, { { 1.40852210e-001f, -1.09057783e-001f, -1.09208910e-001f, 1.09057783e-001f, -7.58818830e-002f, 7.66295578e-002f, -3.28314629e-004f, -7.66295578e-002f, 0.00000000e+000f }, { 7.14251066e-002f, -7.13950780e-002f, -7.14940135e-002f, 7.13950780e-002f, -9.61978444e-002f, 9.71456952e-002f, -4.16214759e-004f, -9.71456952e-002f, 0.00000000e+000f } }, { { 1.40852210e-001f, -1.09057783e-001f, -1.09208910e-001f, -1.09057783e-001f, 7.58818830e-002f, 7.66295578e-002f, -3.28314629e-004f, 7.66295578e-002f, 0.00000000e+000f }, { 7.14251066e-002f, -7.13950780e-002f, -7.14940135e-002f, -7.13950780e-002f, 9.61978444e-002f, 9.71456952e-002f, -4.16214759e-004f, 9.71456952e-002f, 0.00000000e+000f } }, { { 1.40852210e-001f, 1.09057783e-001f, -1.09208910e-001f, -1.09057783e-001f, -7.58818830e-002f, -7.66295578e-002f, -3.28314629e-004f, 7.66295578e-002f, 0.00000000e+000f }, { 7.14251066e-002f, 7.13950780e-002f, -7.14940135e-002f, -7.13950780e-002f, -9.61978444e-002f, -9.71456952e-002f, -4.16214759e-004f, 9.71456952e-002f, 0.00000000e+000f } }, { { 1.43315266e-001f, 0.00000000e+000f, -1.90399923e-001f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, 1.18020996e-001f, 0.00000000e+000f, 0.00000000e+000f }, { 7.26741039e-002f, 0.00000000e+000f, -1.24646009e-001f, 0.00000000e+000f, 0.00000000e+000f, 0.00000000e+000f, 1.49618920e-001f, 0.00000000e+000f, 0.00000000e+000f } }, }; const ALfloat (*AmbiMatrix)[2][MAX_AMBI_COEFFS] = hoa_mode ? AmbiMatrixHOA : AmbiMatrixFOA; size_t count = hoa_mode ? 9 : 4; size_t i; static_assert(9 <= COUNTOF(device->Hrtf.Coeffs), "ALCdevice::Hrtf.Values/Coeffs size is too small"); static_assert(COUNTOF(AmbiPoints) <= HRTF_AMBI_MAX_CHANNELS, "HRTF_AMBI_MAX_CHANNELS is too small"); for(i = 0;i < count;i++) { device->Dry.Ambi.Map[i].Scale = 1.0f; device->Dry.Ambi.Map[i].Index = i; } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; if(!hoa_mode) { device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; device->FOAOut.NumChannels = 0; } else { memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); for(i = 0;i < 4;i++) { device->FOAOut.Ambi.Map[i].Scale = 1.0f; device->FOAOut.Ambi.Map[i].Index = i; } device->FOAOut.CoeffCount = 0; device->FOAOut.NumChannels = 4; ambiup_reset(device->AmbiUp, device); } device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans); memset(device->Hrtf.Coeffs, 0, sizeof(device->Hrtf.Coeffs)); device->Hrtf.IrSize = BuildBFormatHrtf(device->Hrtf.Handle, device->Hrtf.Coeffs, device->Dry.NumChannels, AmbiPoints, AmbiMatrix, COUNTOF(AmbiPoints) ); /* Round up to the nearest multiple of 8 */ device->Hrtf.IrSize = (device->Hrtf.IrSize+7)&~7; } static void InitUhjPanning(ALCdevice *device) { ALsizei count = 3; ALsizei i; for(i = 0;i < count;i++) { ALsizei acn = FuMa2ACN[i]; device->Dry.Ambi.Map[i].Scale = 1.0f/FuMa2N3DScale[acn]; device->Dry.Ambi.Map[i].Index = acn; } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; device->FOAOut.NumChannels = 0; device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans); } void aluInitRenderer(ALCdevice *device, ALint hrtf_id, enum HrtfRequestMode hrtf_appreq, enum HrtfRequestMode hrtf_userreq) { const char *mode; bool headphones; int bs2blevel; size_t i; device->Hrtf.Handle = NULL; al_string_clear(&device->Hrtf.Name); device->Render_Mode = NormalRender; memset(&device->Dry.Ambi, 0, sizeof(device->Dry.Ambi)); device->Dry.CoeffCount = 0; device->Dry.NumChannels = 0; memset(device->ChannelDelay, 0, sizeof(device->ChannelDelay)); for(i = 0;i < MAX_OUTPUT_CHANNELS;i++) { device->ChannelDelay[i].Gain = 1.0f; device->ChannelDelay[i].Length = 0; } if(device->FmtChans != DevFmtStereo) { ALsizei speakermap[MAX_OUTPUT_CHANNELS]; const char *devname, *layout = NULL; AmbDecConf conf, *pconf = NULL; if(hrtf_appreq == Hrtf_Enable) device->Hrtf.Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; ambdec_init(&conf); devname = al_string_get_cstr(device->DeviceName); switch(device->FmtChans) { case DevFmtQuad: layout = "quad"; break; case DevFmtX51: /* fall-through */ case DevFmtX51Rear: layout = "surround51"; break; case DevFmtX61: layout = "surround61"; break; case DevFmtX71: layout = "surround71"; break; /* Mono, Stereo, and Ambisonics output don't use custom decoders. */ case DevFmtMono: case DevFmtStereo: case DevFmtAmbi1: case DevFmtAmbi2: case DevFmtAmbi3: break; } if(layout) { const char *fname; if(ConfigValueStr(devname, "decoder", layout, &fname)) { if(!ambdec_load(&conf, fname)) ERR("Failed to load layout file %s\n", fname); else { if(conf.ChanMask > 0xffff) ERR("Unsupported channel mask 0x%04x (max 0xffff)\n", conf.ChanMask); else { if(MakeSpeakerMap(device, &conf, speakermap)) pconf = &conf; } } } } if(pconf && GetConfigValueBool(devname, "decoder", "hq-mode", 0)) { ambiup_free(device->AmbiUp); device->AmbiUp = NULL; if(!device->AmbiDecoder) device->AmbiDecoder = bformatdec_alloc(); } else { bformatdec_free(device->AmbiDecoder); device->AmbiDecoder = NULL; if(device->FmtChans > DevFmtAmbi1 && device->FmtChans <= DevFmtAmbi3) { if(!device->AmbiUp) device->AmbiUp = ambiup_alloc(); } else { ambiup_free(device->AmbiUp); device->AmbiUp = NULL; } } if(!pconf) InitPanning(device); else if(device->AmbiDecoder) InitHQPanning(device, pconf, speakermap); else InitCustomPanning(device, pconf, speakermap); ambdec_deinit(&conf); return; } bformatdec_free(device->AmbiDecoder); device->AmbiDecoder = NULL; headphones = device->IsHeadphones; if(device->Type != Loopback) { const char *mode; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "stereo-mode", &mode)) { if(strcasecmp(mode, "headphones") == 0) headphones = true; else if(strcasecmp(mode, "speakers") == 0) headphones = false; else if(strcasecmp(mode, "auto") != 0) ERR("Unexpected stereo-mode: %s\n", mode); } } if(hrtf_userreq == Hrtf_Default) { bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable); if(!usehrtf) goto no_hrtf; device->Hrtf.Status = ALC_HRTF_ENABLED_SOFT; if(headphones && hrtf_appreq != Hrtf_Disable) device->Hrtf.Status = ALC_HRTF_HEADPHONES_DETECTED_SOFT; } else { if(hrtf_userreq != Hrtf_Enable) { if(hrtf_appreq == Hrtf_Enable) device->Hrtf.Status = ALC_HRTF_DENIED_SOFT; goto no_hrtf; } device->Hrtf.Status = ALC_HRTF_REQUIRED_SOFT; } if(VECTOR_SIZE(device->Hrtf.List) == 0) { VECTOR_DEINIT(device->Hrtf.List); device->Hrtf.List = EnumerateHrtf(device->DeviceName); } if(hrtf_id >= 0 && (size_t)hrtf_id < VECTOR_SIZE(device->Hrtf.List)) { const HrtfEntry *entry = &VECTOR_ELEM(device->Hrtf.List, hrtf_id); if(entry->hrtf->sampleRate == device->Frequency) { device->Hrtf.Handle = entry->hrtf; al_string_copy(&device->Hrtf.Name, entry->name); } } for(i = 0;!device->Hrtf.Handle && i < VECTOR_SIZE(device->Hrtf.List);i++) { const HrtfEntry *entry = &VECTOR_ELEM(device->Hrtf.List, i); if(entry->hrtf->sampleRate == device->Frequency) { device->Hrtf.Handle = entry->hrtf; al_string_copy(&device->Hrtf.Name, entry->name); } } if(device->Hrtf.Handle) { bool hoa_mode; device->Render_Mode = HrtfRender; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "hrtf-mode", &mode)) { if(strcasecmp(mode, "full") == 0) device->Render_Mode = HrtfRender; else if(strcasecmp(mode, "basic") == 0) device->Render_Mode = NormalRender; else ERR("Unexpected hrtf-mode: %s\n", mode); } if(device->Render_Mode == HrtfRender) { /* Don't bother with HOA when using full HRTF rendering. Nothing * needs it, and it eases the CPU/memory load. */ ambiup_free(device->AmbiUp); device->AmbiUp = NULL; hoa_mode = false; } else { if(!device->AmbiUp) device->AmbiUp = ambiup_alloc(); hoa_mode = true; } TRACE("%s HRTF rendering enabled, using \"%s\"\n", ((device->Render_Mode == HrtfRender) ? "Full" : "Basic"), al_string_get_cstr(device->Hrtf.Name) ); InitHrtfPanning(device, hoa_mode); return; } device->Hrtf.Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; no_hrtf: TRACE("HRTF disabled\n"); device->Render_Mode = StereoPair; ambiup_free(device->AmbiUp); device->AmbiUp = NULL; bs2blevel = ((headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable)) ? 5 : 0; if(device->Type != Loopback) ConfigValueInt(al_string_get_cstr(device->DeviceName), NULL, "cf_level", &bs2blevel); if(bs2blevel > 0 && bs2blevel <= 6) { device->Bs2b = al_calloc(16, sizeof(*device->Bs2b)); bs2b_set_params(device->Bs2b, bs2blevel, device->Frequency); TRACE("BS2B enabled\n"); InitPanning(device); return; } TRACE("BS2B disabled\n"); if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "stereo-encoding", &mode)) { if(strcasecmp(mode, "uhj") == 0) device->Render_Mode = NormalRender; else if(strcasecmp(mode, "panpot") != 0) ERR("Unexpected stereo-encoding: %s\n", mode); } if(device->Render_Mode == NormalRender) { device->Uhj_Encoder = al_calloc(16, sizeof(Uhj2Encoder)); TRACE("UHJ enabled\n"); InitUhjPanning(device); return; } TRACE("UHJ disabled\n"); InitPanning(device); } void aluInitEffectPanning(ALeffectslot *slot) { ALsizei i; memset(slot->ChanMap, 0, sizeof(slot->ChanMap)); slot->NumChannels = 0; for(i = 0;i < MAX_EFFECT_CHANNELS;i++) { slot->ChanMap[i].Scale = 1.0f; slot->ChanMap[i].Index = i; } slot->NumChannels = i; }