/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "alAuxEffectSlot.h" #include "alu.h" #include "bool.h" #include "ambdec.h" #include "bformatdec.h" #include "uhjfilter.h" #include "bs2b.h" extern inline void CalcXYZCoeffs(ALfloat x, ALfloat y, ALfloat z, ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS]); #define ZERO_ORDER_SCALE 0.0f #define FIRST_ORDER_SCALE 1.0f #define SECOND_ORDER_SCALE (1.0f / 1.22474f) #define THIRD_ORDER_SCALE (1.0f / 1.30657f) static const ALuint FuMa2ACN[MAX_AMBI_COEFFS] = { 0, /* W */ 3, /* X */ 1, /* Y */ 2, /* Z */ 6, /* R */ 7, /* S */ 5, /* T */ 8, /* U */ 4, /* V */ 12, /* K */ 13, /* L */ 11, /* M */ 14, /* N */ 10, /* O */ 15, /* P */ 9, /* Q */ }; /* NOTE: These are scale factors as applied to Ambisonics content. Decoder * coefficients should be divided by these values to get proper N3D scalings. */ static const ALfloat UnitScale[MAX_AMBI_COEFFS] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }; static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = { 1.000000000f, /* ACN 0 (W), sqrt(1) */ 1.732050808f, /* ACN 1 (Y), sqrt(3) */ 1.732050808f, /* ACN 2 (Z), sqrt(3) */ 1.732050808f, /* ACN 3 (X), sqrt(3) */ 2.236067978f, /* ACN 4 (V), sqrt(5) */ 2.236067978f, /* ACN 5 (T), sqrt(5) */ 2.236067978f, /* ACN 6 (R), sqrt(5) */ 2.236067978f, /* ACN 7 (S), sqrt(5) */ 2.236067978f, /* ACN 8 (U), sqrt(5) */ 2.645751311f, /* ACN 9 (Q), sqrt(7) */ 2.645751311f, /* ACN 10 (O), sqrt(7) */ 2.645751311f, /* ACN 11 (M), sqrt(7) */ 2.645751311f, /* ACN 12 (K), sqrt(7) */ 2.645751311f, /* ACN 13 (L), sqrt(7) */ 2.645751311f, /* ACN 14 (N), sqrt(7) */ 2.645751311f, /* ACN 15 (P), sqrt(7) */ }; static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = { 1.414213562f, /* ACN 0 (W), sqrt(2) */ 1.732050808f, /* ACN 1 (Y), sqrt(3) */ 1.732050808f, /* ACN 2 (Z), sqrt(3) */ 1.732050808f, /* ACN 3 (X), sqrt(3) */ 1.936491673f, /* ACN 4 (V), sqrt(15)/2 */ 1.936491673f, /* ACN 5 (T), sqrt(15)/2 */ 2.236067978f, /* ACN 6 (R), sqrt(5) */ 1.936491673f, /* ACN 7 (S), sqrt(15)/2 */ 1.936491673f, /* ACN 8 (U), sqrt(15)/2 */ 2.091650066f, /* ACN 9 (Q), sqrt(35/8) */ 1.972026594f, /* ACN 10 (O), sqrt(35)/3 */ 2.231093404f, /* ACN 11 (M), sqrt(224/45) */ 2.645751311f, /* ACN 12 (K), sqrt(7) */ 2.231093404f, /* ACN 13 (L), sqrt(224/45) */ 1.972026594f, /* ACN 14 (N), sqrt(35)/3 */ 2.091650066f, /* ACN 15 (P), sqrt(35/8) */ }; void CalcDirectionCoeffs(const ALfloat dir[3], ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS]) { /* Convert from OpenAL coords to Ambisonics. */ ALfloat x = -dir[2]; ALfloat y = -dir[0]; ALfloat z = dir[1]; /* Zeroth-order */ coeffs[0] = 1.0f; /* ACN 0 = 1 */ /* First-order */ coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */ coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */ coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */ /* Second-order */ coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */ coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */ coeffs[6] = 1.118033989f * (3.0f*z*z - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */ coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */ coeffs[8] = 1.936491673f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */ /* Third-order */ coeffs[9] = 2.091650066f * y * (3.0f*x*x - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */ coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */ coeffs[11] = 1.620185175f * y * (5.0f*z*z - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */ coeffs[12] = 1.322875656f * z * (5.0f*z*z - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */ coeffs[13] = 1.620185175f * x * (5.0f*z*z - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */ coeffs[14] = 5.123475383f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */ coeffs[15] = 2.091650066f * x * (x*x - 3.0f*y*y); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */ if(spread > 0.0f) { /* Implement the spread by using a spherical source that subtends the * angle spread. See: * http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3 * * When adjusted for N3D normalization instead of SN3D, these * calculations are: * * ZH0 = -sqrt(pi) * (-1+ca); * ZH1 = 0.5*sqrt(pi) * sa*sa; * ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1); * ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1); * ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3); * ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1); * * The gain of the source is compensated for size, so that the * loundness doesn't depend on the spread. That is, the factors are * scaled so that ZH0 remains 1 regardless of the spread. Thus: * * ZH0 = 1.0f; * ZH1 = 0.5f * (ca+1.0f); * ZH2 = 0.5f * (ca+1.0f)*ca; * ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f); * ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca; * ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f); */ ALfloat ca = cosf(spread * 0.5f); ALfloat ZH0_norm = 1.0f; ALfloat ZH1_norm = 0.5f * (ca+1.f); ALfloat ZH2_norm = 0.5f * (ca+1.f)*ca; ALfloat ZH3_norm = 0.125f * (ca+1.f)*(5.f*ca*ca-1.f); /* Zeroth-order */ coeffs[0] *= ZH0_norm; /* First-order */ coeffs[1] *= ZH1_norm; coeffs[2] *= ZH1_norm; coeffs[3] *= ZH1_norm; /* Second-order */ coeffs[4] *= ZH2_norm; coeffs[5] *= ZH2_norm; coeffs[6] *= ZH2_norm; coeffs[7] *= ZH2_norm; coeffs[8] *= ZH2_norm; /* Third-order */ coeffs[9] *= ZH3_norm; coeffs[10] *= ZH3_norm; coeffs[11] *= ZH3_norm; coeffs[12] *= ZH3_norm; coeffs[13] *= ZH3_norm; coeffs[14] *= ZH3_norm; coeffs[15] *= ZH3_norm; } } void CalcAngleCoeffs(ALfloat azimuth, ALfloat elevation, ALfloat spread, ALfloat coeffs[MAX_AMBI_COEFFS]) { ALfloat dir[3] = { sinf(azimuth) * cosf(elevation), sinf(elevation), -cosf(azimuth) * cosf(elevation) }; CalcDirectionCoeffs(dir, spread, coeffs); } void ComputeAmbientGainsMC(const ChannelConfig *chancoeffs, ALuint numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALuint i; for(i = 0;i < numchans;i++) { // The W coefficients are based on a mathematical average of the // output. The square root of the base average provides for a more // perceptual average volume, better suited to non-directional gains. gains[i] = sqrtf(chancoeffs[i][0]) * ingain; } for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputeAmbientGainsBF(const BFChannelConfig *chanmap, ALuint numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALfloat gain = 0.0f; ALuint i; for(i = 0;i < numchans;i++) { if(chanmap[i].Index == 0) gain += chanmap[i].Scale; } gains[0] = gain * 1.414213562f * ingain; for(i = 1;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputePanningGainsMC(const ChannelConfig *chancoeffs, ALuint numchans, ALuint numcoeffs, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALuint i, j; for(i = 0;i < numchans;i++) { float gain = 0.0f; for(j = 0;j < numcoeffs;j++) gain += chancoeffs[i][j]*coeffs[j]; gains[i] = gain * ingain; } for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputePanningGainsBF(const BFChannelConfig *chanmap, ALuint numchans, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALuint i; for(i = 0;i < numchans;i++) gains[i] = chanmap[i].Scale * coeffs[chanmap[i].Index] * ingain; for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputeFirstOrderGainsMC(const ChannelConfig *chancoeffs, ALuint numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALuint i, j; for(i = 0;i < numchans;i++) { float gain = 0.0f; for(j = 0;j < 4;j++) gain += chancoeffs[i][j] * mtx[j]; gains[i] = gain * ingain; } for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputeFirstOrderGainsBF(const BFChannelConfig *chanmap, ALuint numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALuint i; for(i = 0;i < numchans;i++) gains[i] = chanmap[i].Scale * mtx[chanmap[i].Index] * ingain; for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } DECL_CONST static inline const char *GetLabelFromChannel(enum Channel channel) { switch(channel) { case FrontLeft: return "front-left"; case FrontRight: return "front-right"; case FrontCenter: return "front-center"; case LFE: return "lfe"; case BackLeft: return "back-left"; case BackRight: return "back-right"; case BackCenter: return "back-center"; case SideLeft: return "side-left"; case SideRight: return "side-right"; case UpperFrontLeft: return "upper-front-left"; case UpperFrontRight: return "upper-front-right"; case UpperBackLeft: return "upper-back-left"; case UpperBackRight: return "upper-back-right"; case LowerFrontLeft: return "lower-front-left"; case LowerFrontRight: return "lower-front-right"; case LowerBackLeft: return "lower-back-left"; case LowerBackRight: return "lower-back-right"; case Aux0: return "aux-0"; case Aux1: return "aux-1"; case Aux2: return "aux-2"; case Aux3: return "aux-3"; case Aux4: return "aux-4"; case Aux5: return "aux-5"; case Aux6: return "aux-6"; case Aux7: return "aux-7"; case Aux8: return "aux-8"; case Aux9: return "aux-9"; case Aux10: return "aux-10"; case Aux11: return "aux-11"; case Aux12: return "aux-12"; case Aux13: return "aux-13"; case Aux14: return "aux-14"; case Aux15: return "aux-15"; case InvalidChannel: break; } return "(unknown)"; } typedef struct ChannelMap { enum Channel ChanName; ChannelConfig Config; } ChannelMap; static void SetChannelMap(const enum Channel *devchans, ChannelConfig *ambicoeffs, const ChannelMap *chanmap, size_t count, ALuint *outcount, ALboolean isfuma) { size_t j, k; ALuint i; for(i = 0;i < MAX_OUTPUT_CHANNELS && devchans[i] != InvalidChannel;i++) { if(devchans[i] == LFE) { for(j = 0;j < MAX_AMBI_COEFFS;j++) ambicoeffs[i][j] = 0.0f; continue; } for(j = 0;j < count;j++) { if(devchans[i] != chanmap[j].ChanName) continue; if(isfuma) { /* Reformat FuMa -> ACN/N3D */ for(k = 0;k < MAX_AMBI_COEFFS;++k) { ALuint acn = FuMa2ACN[k]; ambicoeffs[i][acn] = chanmap[j].Config[k] / FuMa2N3DScale[acn]; } } else { for(k = 0;k < MAX_AMBI_COEFFS;++k) ambicoeffs[i][k] = chanmap[j].Config[k]; } break; } if(j == count) ERR("Failed to match %s channel (%u) in channel map\n", GetLabelFromChannel(devchans[i]), i); } *outcount = i; } static bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALuint speakermap[MAX_OUTPUT_CHANNELS]) { ALuint i; for(i = 0;i < conf->NumSpeakers;i++) { int c = -1; /* NOTE: AmbDec does not define any standard speaker names, however * for this to work we have to by able to find the output channel * the speaker definition corresponds to. Therefore, OpenAL Soft * requires these channel labels to be recognized: * * LF = Front left * RF = Front right * LS = Side left * RS = Side right * LB = Back left * RB = Back right * CE = Front center * CB = Back center * * Additionally, surround51 will acknowledge back speakers for side * channels, and surround51rear will acknowledge side speakers for * back channels, to avoid issues with an ambdec expecting 5.1 to * use the side channels when the device is configured for back, * and vice-versa. */ if(al_string_cmp_cstr(conf->Speakers[i].Name, "LF") == 0) c = GetChannelIdxByName(device->RealOut, FrontLeft); else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RF") == 0) c = GetChannelIdxByName(device->RealOut, FrontRight); else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CE") == 0) c = GetChannelIdxByName(device->RealOut, FrontCenter); else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LS") == 0) { if(device->FmtChans == DevFmtX51Rear) c = GetChannelIdxByName(device->RealOut, BackLeft); else c = GetChannelIdxByName(device->RealOut, SideLeft); } else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RS") == 0) { if(device->FmtChans == DevFmtX51Rear) c = GetChannelIdxByName(device->RealOut, BackRight); else c = GetChannelIdxByName(device->RealOut, SideRight); } else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LB") == 0) { if(device->FmtChans == DevFmtX51) c = GetChannelIdxByName(device->RealOut, SideLeft); else c = GetChannelIdxByName(device->RealOut, BackLeft); } else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RB") == 0) { if(device->FmtChans == DevFmtX51) c = GetChannelIdxByName(device->RealOut, SideRight); else c = GetChannelIdxByName(device->RealOut, BackRight); } else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CB") == 0) c = GetChannelIdxByName(device->RealOut, BackCenter); else { const char *name = al_string_get_cstr(conf->Speakers[i].Name); unsigned int n; char ch; if(sscanf(name, "AUX%u%c", &n, &ch) == 1 && n < 16) c = GetChannelIdxByName(device->RealOut, Aux0+n); else { ERR("AmbDec speaker label \"%s\" not recognized\n", name); return false; } } if(c == -1) { ERR("Failed to lookup AmbDec speaker label %s\n", al_string_get_cstr(conf->Speakers[i].Name)); return false; } speakermap[i] = c; } return true; } /* NOTE: These decoder coefficients are using FuMa channel ordering and * normalization, since that's what was produced by the Ambisonic Decoder * Toolbox. SetChannelMap will convert them to N3D. */ static const ChannelMap MonoCfg[1] = { { FrontCenter, { 1.414213562f } }, }, StereoCfg[2] = { { FrontLeft, { 0.707106781f, 0.0f, 0.5f, 0.0f } }, { FrontRight, { 0.707106781f, 0.0f, -0.5f, 0.0f } }, }, QuadCfg[4] = { { FrontLeft, { 0.353553f, 0.306186f, 0.306186f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.125000f } }, { FrontRight, { 0.353553f, 0.306186f, -0.306186f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.125000f } }, { BackLeft, { 0.353553f, -0.306186f, 0.306186f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.125000f } }, { BackRight, { 0.353553f, -0.306186f, -0.306186f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.125000f } }, }, X51SideCfg[5] = { { FrontLeft, { 0.208954f, 0.199518f, 0.223424f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012543f, 0.144260f } }, { FrontRight, { 0.208950f, 0.199514f, -0.223425f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012544f, -0.144258f } }, { FrontCenter, { 0.109403f, 0.168250f, -0.000002f, 0.0f, 0.0f, 0.0f, 0.0f, 0.100431f, -0.000001f } }, { SideLeft, { 0.470934f, -0.346484f, 0.327504f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022188f, -0.041113f } }, { SideRight, { 0.470936f, -0.346480f, -0.327507f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022186f, 0.041114f } }, }, X51RearCfg[5] = { { FrontLeft, { 0.208954f, 0.199518f, 0.223424f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012543f, 0.144260f } }, { FrontRight, { 0.208950f, 0.199514f, -0.223425f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012544f, -0.144258f } }, { FrontCenter, { 0.109403f, 0.168250f, -0.000002f, 0.0f, 0.0f, 0.0f, 0.0f, 0.100431f, -0.000001f } }, { BackLeft, { 0.470934f, -0.346484f, 0.327504f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022188f, -0.041113f } }, { BackRight, { 0.470936f, -0.346480f, -0.327507f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022186f, 0.041114f } }, }, X61Cfg[6] = { { FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } }, { FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } }, { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } }, { BackCenter, { 0.353556f, -0.461940f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.165723f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.000000f } }, { SideLeft, { 0.289151f, -0.081301f, 0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, -0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, -0.032897f } }, { SideRight, { 0.289151f, -0.081301f, -0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, 0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, 0.032897f } }, }, X71Cfg[7] = { { FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } }, { FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } }, { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } }, { BackLeft, { 0.224752f, -0.295009f, 0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, -0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065799f } }, { BackRight, { 0.224752f, -0.295009f, -0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, 0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065799f } }, { SideLeft, { 0.224739f, 0.000000f, 0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065795f } }, { SideRight, { 0.224739f, 0.000000f, -0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065795f } }, }; static void InitPanning(ALCdevice *device) { const ChannelMap *chanmap = NULL; ALuint coeffcount = 0; ALfloat ambiscale; size_t count = 0; ALuint i, j; ambiscale = 1.0f; switch(device->FmtChans) { case DevFmtMono: count = COUNTOF(MonoCfg); chanmap = MonoCfg; ambiscale = ZERO_ORDER_SCALE; coeffcount = 1; break; case DevFmtStereo: count = COUNTOF(StereoCfg); chanmap = StereoCfg; ambiscale = FIRST_ORDER_SCALE; coeffcount = 4; break; case DevFmtQuad: count = COUNTOF(QuadCfg); chanmap = QuadCfg; ambiscale = SECOND_ORDER_SCALE; coeffcount = 9; break; case DevFmtX51: count = COUNTOF(X51SideCfg); chanmap = X51SideCfg; ambiscale = SECOND_ORDER_SCALE; coeffcount = 9; break; case DevFmtX51Rear: count = COUNTOF(X51RearCfg); chanmap = X51RearCfg; ambiscale = SECOND_ORDER_SCALE; coeffcount = 9; break; case DevFmtX61: count = COUNTOF(X61Cfg); chanmap = X61Cfg; ambiscale = THIRD_ORDER_SCALE; coeffcount = 16; break; case DevFmtX71: count = COUNTOF(X71Cfg); chanmap = X71Cfg; ambiscale = THIRD_ORDER_SCALE; coeffcount = 16; break; case DevFmtBFormat3D: break; } if(device->FmtChans == DevFmtBFormat3D) { count = 4; for(i = 0;i < count;i++) { ALuint acn = FuMa2ACN[i]; device->Dry.Ambi.Map[i].Scale = 1.0f/FuMa2N3DScale[acn]; device->Dry.Ambi.Map[i].Index = acn; } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; } else { SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs, chanmap, count, &device->Dry.NumChannels, AL_TRUE); device->Dry.CoeffCount = coeffcount; memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); for(i = 0;i < device->Dry.NumChannels;i++) { device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0]; for(j = 1;j < 4;j++) device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * ambiscale; } device->FOAOut.CoeffCount = 4; } } static void InitCustomPanning(ALCdevice *device, const AmbDecConf *conf, const ALuint speakermap[MAX_OUTPUT_CHANNELS]) { ChannelMap chanmap[MAX_OUTPUT_CHANNELS]; const ALfloat *coeff_scale = UnitScale; ALfloat ambiscale = 1.0f; ALuint i, j; if(conf->FreqBands != 1) ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n", conf->XOverFreq); if(conf->ChanMask > 0x1ff) ambiscale = THIRD_ORDER_SCALE; else if(conf->ChanMask > 0xf) ambiscale = SECOND_ORDER_SCALE; else if(conf->ChanMask > 0x1) ambiscale = FIRST_ORDER_SCALE; else ambiscale = 0.0f; if(conf->CoeffScale == ADS_SN3D) coeff_scale = SN3D2N3DScale; else if(conf->CoeffScale == ADS_FuMa) coeff_scale = FuMa2N3DScale; for(i = 0;i < conf->NumSpeakers;i++) { ALuint chan = speakermap[i]; ALfloat gain; ALuint k = 0; for(j = 0;j < MAX_AMBI_COEFFS;j++) chanmap[i].Config[j] = 0.0f; chanmap[i].ChanName = device->RealOut.ChannelName[chan]; for(j = 0;j < MAX_AMBI_COEFFS;j++) { if(j == 0) gain = conf->HFOrderGain[0]; else if(j == 1) gain = conf->HFOrderGain[1]; else if(j == 4) gain = conf->HFOrderGain[2]; else if(j == 9) gain = conf->HFOrderGain[3]; if((conf->ChanMask&(1<HFMatrix[i][k++] / coeff_scale[j] * gain; } } SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs, chanmap, conf->NumSpeakers, &device->Dry.NumChannels, AL_FALSE); device->Dry.CoeffCount = (conf->ChanMask > 0x1ff) ? 16 : (conf->ChanMask > 0xf) ? 9 : 4; memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); for(i = 0;i < device->Dry.NumChannels;i++) { device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0]; for(j = 1;j < 4;j++) device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * ambiscale; } device->FOAOut.CoeffCount = 4; } static void InitHQPanning(ALCdevice *device, const AmbDecConf *conf, const ALuint speakermap[MAX_OUTPUT_CHANNELS]) { const char *devname; int decflags = 0; size_t count; ALuint i; devname = al_string_get_cstr(device->DeviceName); if(GetConfigValueBool(devname, "decoder", "distance-comp", 1)) decflags |= BFDF_DistanceComp; if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { count = (conf->ChanMask > 0x1ff) ? 16 : (conf->ChanMask > 0xf) ? 9 : 4; for(i = 0;i < count;i++) { device->Dry.Ambi.Map[i].Scale = 1.0f; device->Dry.Ambi.Map[i].Index = i; } } else { static const int map[MAX_AMBI2D_COEFFS] = { 0, 1, 3, 4, 8, 9, 15 }; count = (conf->ChanMask > 0x1ff) ? 7 : (conf->ChanMask > 0xf) ? 5 : 3; for(i = 0;i < count;i++) { device->Dry.Ambi.Map[i].Scale = 1.0f; device->Dry.Ambi.Map[i].Index = map[i]; } } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; TRACE("Enabling %s-band %s-order%s ambisonic decoder\n", (conf->FreqBands == 1) ? "single" : "dual", (conf->ChanMask > 0xf) ? (conf->ChanMask > 0x1ff) ? "third" : "second" : "first", (conf->ChanMask&AMBI_PERIPHONIC_MASK) ? " periphonic" : "" ); bformatdec_reset(device->AmbiDecoder, conf, count, device->Frequency, speakermap, decflags); if(bformatdec_getOrder(device->AmbiDecoder) < 2) { device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; } else { memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); for(i = 0;i < 4;i++) { device->FOAOut.Ambi.Map[i].Scale = 1.0f; device->FOAOut.Ambi.Map[i].Index = i; } device->FOAOut.CoeffCount = 0; } } static void InitHrtfPanning(ALCdevice *device) { static const enum Channel CubeChannels[MAX_OUTPUT_CHANNELS] = { UpperFrontLeft, UpperFrontRight, UpperBackLeft, UpperBackRight, LowerFrontLeft, LowerFrontRight, LowerBackLeft, LowerBackRight, InvalidChannel, InvalidChannel, InvalidChannel, InvalidChannel, InvalidChannel, InvalidChannel, InvalidChannel, InvalidChannel }; static const ChannelMap Cube8Cfg[8] = { { UpperFrontLeft, { 0.176776695f, 0.072168784f, 0.072168784f, 0.072168784f } }, { UpperFrontRight, { 0.176776695f, 0.072168784f, -0.072168784f, 0.072168784f } }, { UpperBackLeft, { 0.176776695f, -0.072168784f, 0.072168784f, 0.072168784f } }, { UpperBackRight, { 0.176776695f, -0.072168784f, -0.072168784f, 0.072168784f } }, { LowerFrontLeft, { 0.176776695f, 0.072168784f, 0.072168784f, -0.072168784f } }, { LowerFrontRight, { 0.176776695f, 0.072168784f, -0.072168784f, -0.072168784f } }, { LowerBackLeft, { 0.176776695f, -0.072168784f, 0.072168784f, -0.072168784f } }, { LowerBackRight, { 0.176776695f, -0.072168784f, -0.072168784f, -0.072168784f } }, }; static const struct { enum Channel Channel; ALfloat Angle; ALfloat Elevation; } CubeInfo[8] = { { UpperFrontLeft, DEG2RAD( -45.0f), DEG2RAD( 45.0f) }, { UpperFrontRight, DEG2RAD( 45.0f), DEG2RAD( 45.0f) }, { UpperBackLeft, DEG2RAD(-135.0f), DEG2RAD( 45.0f) }, { UpperBackRight, DEG2RAD( 135.0f), DEG2RAD( 45.0f) }, { LowerFrontLeft, DEG2RAD( -45.0f), DEG2RAD(-45.0f) }, { LowerFrontRight, DEG2RAD( 45.0f), DEG2RAD(-45.0f) }, { LowerBackLeft, DEG2RAD(-135.0f), DEG2RAD(-45.0f) }, { LowerBackRight, DEG2RAD( 135.0f), DEG2RAD(-45.0f) }, }; const ChannelMap *chanmap = Cube8Cfg; size_t count = COUNTOF(Cube8Cfg); ALuint i; SetChannelMap(CubeChannels, device->Dry.Ambi.Coeffs, chanmap, count, &device->Dry.NumChannels, AL_TRUE); device->Dry.CoeffCount = 4; device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; for(i = 0;i < device->Dry.NumChannels;i++) { int chan = GetChannelIndex(CubeChannels, CubeInfo[i].Channel); GetLerpedHrtfCoeffs(device->Hrtf, CubeInfo[i].Elevation, CubeInfo[i].Angle, 1.0f, 0.0f, device->Hrtf_Params[chan].Coeffs, device->Hrtf_Params[chan].Delay); } } static void InitUhjPanning(ALCdevice *device) { size_t count = 3; ALuint i; for(i = 0;i < count;i++) { ALuint acn = FuMa2ACN[i]; device->Dry.Ambi.Map[i].Scale = 1.0f/FuMa2N3DScale[acn]; device->Dry.Ambi.Map[i].Index = acn; } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; device->FOAOut.Ambi = device->Dry.Ambi; device->FOAOut.CoeffCount = device->Dry.CoeffCount; } void aluInitRenderer(ALCdevice *device, ALint hrtf_id, enum HrtfRequestMode hrtf_appreq, enum HrtfRequestMode hrtf_userreq) { const char *mode; bool headphones; int bs2blevel; size_t i; device->Hrtf = NULL; al_string_clear(&device->Hrtf_Name); device->Render_Mode = NormalRender; memset(&device->Dry.Ambi, 0, sizeof(device->Dry.Ambi)); device->Dry.CoeffCount = 0; device->Dry.NumChannels = 0; if(device->FmtChans != DevFmtStereo) { ALuint speakermap[MAX_OUTPUT_CHANNELS]; const char *devname, *layout = NULL; AmbDecConf conf, *pconf = NULL; if(hrtf_appreq == Hrtf_Enable) device->Hrtf_Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; ambdec_init(&conf); devname = al_string_get_cstr(device->DeviceName); switch(device->FmtChans) { case DevFmtQuad: layout = "quad"; break; case DevFmtX51: layout = "surround51"; break; case DevFmtX51Rear: layout = "surround51rear"; break; case DevFmtX61: layout = "surround61"; break; case DevFmtX71: layout = "surround71"; break; /* Mono, Stereo, and B-Fornat output don't use custom decoders. */ case DevFmtMono: case DevFmtStereo: case DevFmtBFormat3D: break; } if(layout) { const char *fname; if(ConfigValueStr(devname, "decoder", layout, &fname)) { if(!ambdec_load(&conf, fname)) ERR("Failed to load layout file %s\n", fname); else { if(conf.ChanMask > 0xffff) ERR("Unsupported channel mask 0x%04x (max 0xffff)\n", conf.ChanMask); else { if(MakeSpeakerMap(device, &conf, speakermap)) pconf = &conf; } } } } if(pconf && GetConfigValueBool(devname, "decoder", "hq-mode", 0)) { if(!device->AmbiDecoder) device->AmbiDecoder = bformatdec_alloc(); } else { bformatdec_free(device->AmbiDecoder); device->AmbiDecoder = NULL; } if(!pconf) InitPanning(device); else if(device->AmbiDecoder) InitHQPanning(device, pconf, speakermap); else InitCustomPanning(device, pconf, speakermap); ambdec_deinit(&conf); return; } bformatdec_free(device->AmbiDecoder); device->AmbiDecoder = NULL; headphones = device->IsHeadphones; if(device->Type != Loopback) { const char *mode; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "stereo-mode", &mode)) { if(strcasecmp(mode, "headphones") == 0) headphones = true; else if(strcasecmp(mode, "speakers") == 0) headphones = false; else if(strcasecmp(mode, "auto") != 0) ERR("Unexpected stereo-mode: %s\n", mode); } } if(hrtf_userreq == Hrtf_Default) { bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable); if(!usehrtf) goto no_hrtf; device->Hrtf_Status = ALC_HRTF_ENABLED_SOFT; if(headphones && hrtf_appreq != Hrtf_Disable) device->Hrtf_Status = ALC_HRTF_HEADPHONES_DETECTED_SOFT; } else { if(hrtf_userreq != Hrtf_Enable) { if(hrtf_appreq == Hrtf_Enable) device->Hrtf_Status = ALC_HRTF_DENIED_SOFT; goto no_hrtf; } device->Hrtf_Status = ALC_HRTF_REQUIRED_SOFT; } if(VECTOR_SIZE(device->Hrtf_List) == 0) { VECTOR_DEINIT(device->Hrtf_List); device->Hrtf_List = EnumerateHrtf(device->DeviceName); } if(hrtf_id >= 0 && (size_t)hrtf_id < VECTOR_SIZE(device->Hrtf_List)) { const HrtfEntry *entry = &VECTOR_ELEM(device->Hrtf_List, hrtf_id); if(entry->hrtf->sampleRate == device->Frequency) { device->Hrtf = entry->hrtf; al_string_copy(&device->Hrtf_Name, entry->name); } } for(i = 0;!device->Hrtf && i < VECTOR_SIZE(device->Hrtf_List);i++) { const HrtfEntry *entry = &VECTOR_ELEM(device->Hrtf_List, i); if(entry->hrtf->sampleRate == device->Frequency) { device->Hrtf = entry->hrtf; al_string_copy(&device->Hrtf_Name, entry->name); } } if(device->Hrtf) { device->Render_Mode = HrtfRender; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "hrtf-mode", &mode)) { if(strcasecmp(mode, "full") == 0) device->Render_Mode = HrtfRender; else if(strcasecmp(mode, "basic") == 0) device->Render_Mode = NormalRender; else ERR("Unexpected hrtf-mode: %s\n", mode); } TRACE("HRTF enabled, \"%s\"\n", al_string_get_cstr(device->Hrtf_Name)); InitHrtfPanning(device); return; } device->Hrtf_Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; no_hrtf: TRACE("HRTF disabled\n"); bs2blevel = ((headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable)) ? 5 : 0; if(device->Type != Loopback) ConfigValueInt(al_string_get_cstr(device->DeviceName), NULL, "cf_level", &bs2blevel); if(bs2blevel > 0 && bs2blevel <= 6) { device->Bs2b = al_calloc(16, sizeof(*device->Bs2b)); bs2b_set_params(device->Bs2b, bs2blevel, device->Frequency); device->Render_Mode = StereoPair; TRACE("BS2B enabled\n"); InitPanning(device); return; } TRACE("BS2B disabled\n"); device->Render_Mode = NormalRender; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "stereo-panning", &mode)) { if(strcasecmp(mode, "paired") == 0) device->Render_Mode = StereoPair; else if(strcasecmp(mode, "uhj") != 0) ERR("Unexpected stereo-panning: %s\n", mode); } if(device->Render_Mode == NormalRender) { device->Uhj_Encoder = al_calloc(16, sizeof(Uhj2Encoder)); TRACE("UHJ enabled\n"); InitUhjPanning(device); return; } TRACE("UHJ disabled\n"); InitPanning(device); } void aluInitEffectPanning(ALeffectslot *slot) { ALuint i; memset(slot->ChanMap, 0, sizeof(slot->ChanMap)); slot->NumChannels = 0; for(i = 0;i < MAX_EFFECT_CHANNELS;i++) { slot->ChanMap[i].Scale = 1.0f; slot->ChanMap[i].Index = i; } slot->NumChannels = i; }