/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alu.h" #include "bool.h" #define ZERO_ORDER_SCALE 0.0f #define FIRST_ORDER_SCALE 1.0f #define SECOND_ORDER_SCALE (1.0f / 1.22474f) #define THIRD_ORDER_SCALE (1.0f / 1.30657f) static const ALuint FuMa2ACN[MAX_AMBI_COEFFS] = { 0, /* W */ 3, /* X */ 1, /* Y */ 2, /* Z */ 6, /* R */ 7, /* S */ 5, /* T */ 8, /* U */ 4, /* V */ 12, /* K */ 13, /* L */ 11, /* M */ 14, /* N */ 10, /* O */ 15, /* P */ 9, /* Q */ }; /* NOTE: These are scale factors as applied to Ambisonics content. FuMa * decoder coefficients should be divided by these values to get N3D decoder * coefficients. */ static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = { 1.4142f, /* ACN 0 (W), sqrt(2) */ 1.7321f, /* ACN 1 (Y), sqrt(3) */ 1.7321f, /* ACN 2 (Z), sqrt(3) */ 1.7321f, /* ACN 3 (X), sqrt(3) */ 1.9365f, /* ACN 4 (V), sqrt(15)/2 */ 1.9365f, /* ACN 5 (T), sqrt(15)/2 */ 2.2361f, /* ACN 6 (R), sqrt(5) */ 1.9365f, /* ACN 7 (S), sqrt(15)/2 */ 1.9365f, /* ACN 8 (U), sqrt(15)/2 */ 2.0917f, /* ACN 9 (Q), sqrt(35/8) */ 1.9720f, /* ACN 10 (O), sqrt(35)/3 */ 2.2311f, /* ACN 11 (M), sqrt(224/45) */ 2.6458f, /* ACN 12 (K), sqrt(7) */ 2.2311f, /* ACN 13 (L), sqrt(224/45) */ 1.9720f, /* ACN 14 (N), sqrt(35)/3 */ 2.0917f, /* ACN 15 (P), sqrt(35/8) */ }; void ComputeAmbientGains(const ALCdevice *device, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALuint i; for(i = 0;i < device->NumChannels;i++) { // The W coefficients are based on a mathematical average of the // output. The square root of the base average provides for a more // perceptual average volume, better suited to non-directional gains. gains[i] = sqrtf(device->AmbiCoeffs[i][0]) * ingain; } for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat elevation, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALfloat dir[3] = { sinf(angle) * cosf(elevation), sinf(elevation), -cosf(angle) * cosf(elevation) }; ComputeDirectionalGains(device, dir, ingain, gains); } void ComputeDirectionalGains(const ALCdevice *device, const ALfloat dir[3], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALfloat coeffs[MAX_AMBI_COEFFS]; ALuint i, j; /* Convert from OpenAL coords to Ambisonics. */ ALfloat x = -dir[2]; ALfloat y = -dir[0]; ALfloat z = dir[1]; /* Zeroth-order */ coeffs[0] = 1.0f; /* ACN 0 = 1 */ /* First-order */ coeffs[1] = 1.7321f * y; /* ACN 1 = sqrt(3) * Y */ coeffs[2] = 1.7321f * z; /* ACN 2 = sqrt(3) * Z */ coeffs[3] = 1.7321f * x; /* ACN 3 = sqrt(3) * X */ /* Second-order */ coeffs[4] = 3.8730f * x * y; /* ACN 4 = sqrt(15) * X * Y */ coeffs[5] = 3.8730f * y * z; /* ACN 5 = sqrt(15) * Y * Z */ coeffs[6] = 1.1180f * (3.0f*z*z - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */ coeffs[7] = 3.8730f * x * z; /* ACN 7 = sqrt(15) * X * Z */ coeffs[8] = 1.9365f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */ /* Third-order */ coeffs[9] = 2.0917f * y * (3.0f*x*x - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */ coeffs[10] = 10.2470f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */ coeffs[11] = 1.6292f * y * (5.0f*z*z - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */ coeffs[12] = 1.3229f * z * (5.0f*z*z - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */ coeffs[13] = 1.6292f * x * (5.0f*z*z - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */ coeffs[14] = 5.1235f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */ coeffs[15] = 2.0917f * x * (x*x - 3.0f*y*y); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */ for(i = 0;i < device->NumChannels;i++) { float gain = 0.0f; for(j = 0;j < MAX_AMBI_COEFFS;j++) gain += device->AmbiCoeffs[i][j]*coeffs[j]; gains[i] = gain * ingain; } for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } void ComputeBFormatGains(const ALCdevice *device, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]) { ALuint i, j; for(i = 0;i < device->NumChannels;i++) { float gain = 0.0f; for(j = 0;j < 4;j++) gain += device->AmbiCoeffs[i][j] * mtx[j]; gains[i] = gain * ingain; } for(;i < MAX_OUTPUT_CHANNELS;i++) gains[i] = 0.0f; } DECL_CONST static inline const char *GetLabelFromChannel(enum Channel channel) { switch(channel) { case FrontLeft: return "front-left"; case FrontRight: return "front-right"; case FrontCenter: return "front-center"; case LFE: return "lfe"; case BackLeft: return "back-left"; case BackRight: return "back-right"; case BackCenter: return "back-center"; case SideLeft: return "side-left"; case SideRight: return "side-right"; case TopFrontLeft: return "top-front-left"; case TopFrontRight: return "top-front-right"; case TopBackLeft: return "top-back-left"; case TopBackRight: return "top-back-right"; case BottomFrontLeft: return "bottom-front-left"; case BottomFrontRight: return "bottom-front-right"; case BottomBackLeft: return "bottom-back-left"; case BottomBackRight: return "bottom-back-right"; case BFormatW: return "bformat-w"; case BFormatX: return "bformat-x"; case BFormatY: return "bformat-y"; case BFormatZ: return "bformat-z"; case InvalidChannel: break; } return "(unknown)"; } typedef struct ChannelMap { enum Channel ChanName; ChannelConfig Config; } ChannelMap; static void SetChannelMap(ALCdevice *device, const ChannelMap *chanmap, size_t count, ALfloat ambiscale, ALboolean isfuma) { size_t i, j, k; device->AmbiScale = ambiscale; for(i = 0;i < MAX_OUTPUT_CHANNELS && device->ChannelName[i] != InvalidChannel;i++) { if(device->ChannelName[i] == LFE) { for(j = 0;j < MAX_AMBI_COEFFS;j++) device->AmbiCoeffs[i][j] = 0.0f; continue; } for(j = 0;j < count;j++) { if(device->ChannelName[i] == chanmap[j].ChanName) { if(isfuma) { /* Reformat FuMa -> ACN/N3D */ for(k = 0;k < MAX_AMBI_COEFFS;++k) { ALuint acn = FuMa2ACN[k]; device->AmbiCoeffs[i][acn] = chanmap[j].Config[k] / FuMa2N3DScale[acn]; } } else { for(k = 0;k < MAX_AMBI_COEFFS;++k) device->AmbiCoeffs[i][k] = chanmap[j].Config[k]; } break; } } if(j == count) ERR("Failed to match %s channel ("SZFMT") in config\n", GetLabelFromChannel(device->ChannelName[i]), i); } device->NumChannels = i; } static bool LoadChannelSetup(ALCdevice *device) { static const enum Channel mono_chans[1] = { FrontCenter }, stereo_chans[2] = { FrontLeft, FrontRight }, quad_chans[4] = { FrontLeft, FrontRight, BackLeft, BackRight }, surround51_chans[5] = { FrontLeft, FrontRight, FrontCenter, SideLeft, SideRight }, surround51rear_chans[5] = { FrontLeft, FrontRight, FrontCenter, BackLeft, BackRight }, surround61_chans[6] = { FrontLeft, FrontRight, FrontCenter, BackCenter, SideLeft, SideRight }, surround71_chans[7] = { FrontLeft, FrontRight, FrontCenter, BackLeft, BackRight, SideLeft, SideRight }; ChannelMap chanmap[MAX_OUTPUT_CHANNELS]; const enum Channel *channels = NULL; const char *layout = NULL; ALfloat ambiscale = 1.0f; size_t count = 0; int isfuma; int order; size_t i; switch(device->FmtChans) { case DevFmtMono: layout = "mono"; channels = mono_chans; count = COUNTOF(mono_chans); break; case DevFmtStereo: layout = "stereo"; channels = stereo_chans; count = COUNTOF(stereo_chans); break; case DevFmtQuad: layout = "quad"; channels = quad_chans; count = COUNTOF(quad_chans); break; case DevFmtX51: layout = "surround51"; channels = surround51_chans; count = COUNTOF(surround51_chans); break; case DevFmtX51Rear: layout = "surround51rear"; channels = surround51rear_chans; count = COUNTOF(surround51rear_chans); break; case DevFmtX61: layout = "surround61"; channels = surround61_chans; count = COUNTOF(surround61_chans); break; case DevFmtX71: layout = "surround71"; channels = surround71_chans; count = COUNTOF(surround71_chans); break; case DevFmtBFormat3D: break; } if(!layout) return false; else { char name[32] = {0}; const char *type; char eol; snprintf(name, sizeof(name), "%s/type", layout); if(!ConfigValueStr(al_string_get_cstr(device->DeviceName), "layouts", name, &type)) return false; if(sscanf(type, " %31[^: ] : %d%c", name, &order, &eol) != 2) { ERR("Invalid type value '%s' (expected name:order) for layout %s\n", type, layout); return false; } if(strcasecmp(name, "fuma") == 0) isfuma = 1; else if(strcasecmp(name, "n3d") == 0) isfuma = 0; else { ERR("Unhandled type name '%s' (expected FuMa or N3D) for layout %s\n", name, layout); return false; } if(order == 3) ambiscale = THIRD_ORDER_SCALE; else if(order == 2) ambiscale = SECOND_ORDER_SCALE; else if(order == 1) ambiscale = FIRST_ORDER_SCALE; else if(order == 0) ambiscale = ZERO_ORDER_SCALE; else { ERR("Unhandled type order %d (expected 0, 1, 2, or 3) for layout %s\n", order, layout); return false; } } for(i = 0;i < count;i++) { float coeffs[MAX_AMBI_COEFFS] = {0.0f}; const char *channame; char chanlayout[32]; const char *value; int props = 0; char eol = 0; int j; chanmap[i].ChanName = channels[i]; channame = GetLabelFromChannel(channels[i]); snprintf(chanlayout, sizeof(chanlayout), "%s/%s", layout, channame); if(!ConfigValueStr(al_string_get_cstr(device->DeviceName), "layouts", chanlayout, &value)) { ERR("Missing channel %s\n", channame); return false; } if(order == 3) props = sscanf(value, " %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %c", &coeffs[0], &coeffs[1], &coeffs[2], &coeffs[3], &coeffs[4], &coeffs[5], &coeffs[6], &coeffs[7], &coeffs[8], &coeffs[9], &coeffs[10], &coeffs[11], &coeffs[12], &coeffs[13], &coeffs[14], &coeffs[15], &eol ); else if(order == 2) props = sscanf(value, " %f %f %f %f %f %f %f %f %f %c", &coeffs[0], &coeffs[1], &coeffs[2], &coeffs[3], &coeffs[4], &coeffs[5], &coeffs[6], &coeffs[7], &coeffs[8], &eol ); else if(order == 1) props = sscanf(value, " %f %f %f %f %c", &coeffs[0], &coeffs[1], &coeffs[2], &coeffs[3], &eol ); else if(order == 0) props = sscanf(value, " %f %c", &coeffs[0], &eol); if(props == 0) { ERR("Failed to parse option %s properties\n", chanlayout); return false; } if(props > (order+1)*(order+1)) { ERR("Excess elements in option %s (expected %d)\n", chanlayout, (order+1)*(order+1)); return false; } for(j = 0;j < MAX_AMBI_COEFFS;++j) chanmap[i].Config[j] = coeffs[j]; } SetChannelMap(device, chanmap, count, ambiscale, isfuma); return true; } ALvoid aluInitPanning(ALCdevice *device) { /* NOTE: These decoder coefficients are using FuMa channel ordering and * normalization, since that's what was produced by the Ambisonic Decoder * Toolbox. SetChannelMap will convert them to N3D. */ static const ChannelMap MonoCfg[1] = { { FrontCenter, { 1.4142f } }, }, StereoCfg[2] = { { FrontLeft, { 0.7071f, 0.0f, 0.5f, 0.0f } }, { FrontRight, { 0.7071f, 0.0f, -0.5f, 0.0f } }, }, QuadCfg[4] = { { FrontLeft, { 0.353553f, 0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } }, { FrontRight, { 0.353553f, 0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } }, { BackLeft, { 0.353553f, -0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } }, { BackRight, { 0.353553f, -0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } }, }, X51SideCfg[5] = { { FrontLeft, { 0.208954f, 0.212846f, 0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, 0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, 0.047490f } }, { FrontRight, { 0.208954f, 0.212846f, -0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, -0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, -0.047490f } }, { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } }, { SideLeft, { 0.470936f, -0.369626f, 0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, -0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, -0.043968f } }, { SideRight, { 0.470936f, -0.369626f, -0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, 0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, 0.043968f } }, }, X51RearCfg[5] = { { FrontLeft, { 0.208954f, 0.212846f, 0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, 0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, 0.047490f } }, { FrontRight, { 0.208954f, 0.212846f, -0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, -0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, -0.047490f } }, { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } }, { BackLeft, { 0.470936f, -0.369626f, 0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, -0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, -0.043968f } }, { BackRight, { 0.470936f, -0.369626f, -0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, 0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, 0.043968f } }, }, X61Cfg[6] = { { FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } }, { FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } }, { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } }, { BackCenter, { 0.353556f, -0.461940f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.165723f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.000000f } }, { SideLeft, { 0.289151f, -0.081301f, 0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, -0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, -0.032897f } }, { SideRight, { 0.289151f, -0.081301f, -0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, 0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, 0.032897f } }, }, X71Cfg[7] = { { FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } }, { FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } }, { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } }, { BackLeft, { 0.224752f, -0.295009f, 0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, -0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065799f } }, { BackRight, { 0.224752f, -0.295009f, -0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, 0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065799f } }, { SideLeft, { 0.224739f, 0.000000f, 0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065795f } }, { SideRight, { 0.224739f, 0.000000f, -0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065795f } }, }, BFormat3D[4] = { { BFormatW, { 1.0f, 0.0f, 0.0f, 0.0f } }, { BFormatX, { 0.0f, 1.0f, 0.0f, 0.0f } }, { BFormatY, { 0.0f, 0.0f, 1.0f, 0.0f } }, { BFormatZ, { 0.0f, 0.0f, 0.0f, 1.0f } }, }; const ChannelMap *chanmap = NULL; ALfloat ambiscale = 1.0f; size_t count = 0; device->AmbiScale = 1.0f; memset(device->AmbiCoeffs, 0, sizeof(device->AmbiCoeffs)); device->NumChannels = 0; if(device->Hrtf) { ALfloat (*coeffs_list[4])[2]; ALuint *delay_list[4]; ALuint i; count = COUNTOF(BFormat3D); chanmap = BFormat3D; ambiscale = 1.0f; for(i = 0;i < count;i++) device->ChannelName[i] = chanmap[i].ChanName; for(;i < MAX_OUTPUT_CHANNELS;i++) device->ChannelName[i] = InvalidChannel; SetChannelMap(device, chanmap, count, ambiscale, AL_TRUE); for(i = 0;i < 4;++i) { static const enum Channel inputs[4] = { BFormatW, BFormatX, BFormatY, BFormatZ }; int chan = GetChannelIdxByName(device, inputs[i]); coeffs_list[i] = device->Hrtf_Params[chan].Coeffs; delay_list[i] = device->Hrtf_Params[chan].Delay; } GetBFormatHrtfCoeffs(device->Hrtf, 4, coeffs_list, delay_list); return; } if(LoadChannelSetup(device)) return; switch(device->FmtChans) { case DevFmtMono: count = COUNTOF(MonoCfg); chanmap = MonoCfg; ambiscale = ZERO_ORDER_SCALE; break; case DevFmtStereo: count = COUNTOF(StereoCfg); chanmap = StereoCfg; ambiscale = FIRST_ORDER_SCALE; break; case DevFmtQuad: count = COUNTOF(QuadCfg); chanmap = QuadCfg; ambiscale = SECOND_ORDER_SCALE; break; case DevFmtX51: count = COUNTOF(X51SideCfg); chanmap = X51SideCfg; ambiscale = THIRD_ORDER_SCALE; break; case DevFmtX51Rear: count = COUNTOF(X51RearCfg); chanmap = X51RearCfg; ambiscale = THIRD_ORDER_SCALE; break; case DevFmtX61: count = COUNTOF(X61Cfg); chanmap = X61Cfg; ambiscale = THIRD_ORDER_SCALE; break; case DevFmtX71: count = COUNTOF(X71Cfg); chanmap = X71Cfg; ambiscale = THIRD_ORDER_SCALE; break; case DevFmtBFormat3D: count = COUNTOF(BFormat3D); chanmap = BFormat3D; ambiscale = 1.0f; break; } SetChannelMap(device, chanmap, count, ambiscale, AL_TRUE); }