/** * OpenAL cross platform audio library * Copyright (C) 1999-2010 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alu.h" static void SetSpeakerArrangement(const char *name, ALfloat SpeakerAngle[MaxChannels], enum Channel Speaker2Chan[MaxChannels], ALint chans) { char *confkey, *next; char *layout_str; char *sep, *end; enum Channel val; const char *str; int i; if(!ConfigValueStr(NULL, name, &str) && !ConfigValueStr(NULL, "layout", &str)) return; layout_str = strdup(str); next = confkey = layout_str; while(next && *next) { confkey = next; next = strchr(confkey, ','); if(next) { *next = 0; do { next++; } while(isspace(*next) || *next == ','); } sep = strchr(confkey, '='); if(!sep || confkey == sep) { ERR("Malformed speaker key: %s\n", confkey); continue; } end = sep - 1; while(isspace(*end) && end != confkey) end--; *(++end) = 0; if(strcmp(confkey, "fl") == 0 || strcmp(confkey, "front-left") == 0) val = FrontLeft; else if(strcmp(confkey, "fr") == 0 || strcmp(confkey, "front-right") == 0) val = FrontRight; else if(strcmp(confkey, "fc") == 0 || strcmp(confkey, "front-center") == 0) val = FrontCenter; else if(strcmp(confkey, "bl") == 0 || strcmp(confkey, "back-left") == 0) val = BackLeft; else if(strcmp(confkey, "br") == 0 || strcmp(confkey, "back-right") == 0) val = BackRight; else if(strcmp(confkey, "bc") == 0 || strcmp(confkey, "back-center") == 0) val = BackCenter; else if(strcmp(confkey, "sl") == 0 || strcmp(confkey, "side-left") == 0) val = SideLeft; else if(strcmp(confkey, "sr") == 0 || strcmp(confkey, "side-right") == 0) val = SideRight; else { ERR("Unknown speaker for %s: \"%s\"\n", name, confkey); continue; } *(sep++) = 0; while(isspace(*sep)) sep++; for(i = 0;i < chans;i++) { if(Speaker2Chan[i] == val) { long angle = strtol(sep, NULL, 10); if(angle >= -180 && angle <= 180) SpeakerAngle[i] = angle * F_PI/180.0f; else ERR("Invalid angle for speaker \"%s\": %ld\n", confkey, angle); break; } } } free(layout_str); layout_str = NULL; for(i = 0;i < chans;i++) { int min = i; int i2; for(i2 = i+1;i2 < chans;i2++) { if(SpeakerAngle[i2] < SpeakerAngle[min]) min = i2; } if(min != i) { ALfloat tmpf; enum Channel tmpc; tmpf = SpeakerAngle[i]; SpeakerAngle[i] = SpeakerAngle[min]; SpeakerAngle[min] = tmpf; tmpc = Speaker2Chan[i]; Speaker2Chan[i] = Speaker2Chan[min]; Speaker2Chan[min] = tmpc; } } } /** * ComputeAngleGains * * Sets channel gains based on a given source's angle and its half-width. The * angle and hwidth parameters are in radians. */ ALvoid ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat *gains) { ALfloat tmpgains[MaxChannels] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; enum Channel Speaker2Chan[MaxChannels]; ALfloat SpeakerAngle[MaxChannels]; ALfloat langle, rangle; ALfloat a; ALuint i; for(i = 0;i < device->NumChan;i++) Speaker2Chan[i] = device->Speaker2Chan[i]; for(i = 0;i < device->NumChan;i++) SpeakerAngle[i] = device->SpeakerAngle[i]; /* Some easy special-cases first... */ if(device->NumChan == 1 || hwidth >= F_PI) { /* Full coverage for all speakers. */ for(i = 0;i < device->NumChan;i++) { enum Channel chan = Speaker2Chan[i]; gains[chan] = ingain; } return; } if(hwidth <= 0.0f) { /* Infinitely small sound point. */ for(i = 0;i < device->NumChan-1;i++) { if(angle >= SpeakerAngle[i] && angle < SpeakerAngle[i+1]) { /* Sound is between speakers i and i+1 */ a = (angle-SpeakerAngle[i]) / (SpeakerAngle[i+1]-SpeakerAngle[i]); gains[Speaker2Chan[i]] = sqrtf(1.0f-a) * ingain; gains[Speaker2Chan[i+1]] = sqrtf( a) * ingain; return; } } /* Sound is between last and first speakers */ if(angle < SpeakerAngle[0]) angle += F_PI*2.0f; a = (angle-SpeakerAngle[i]) / (F_PI*2.0f + SpeakerAngle[0]-SpeakerAngle[i]); gains[Speaker2Chan[i]] = sqrtf(1.0f-a) * ingain; gains[Speaker2Chan[0]] = sqrtf( a) * ingain; return; } if(fabsf(angle)+hwidth > F_PI) { /* The coverage area would go outside of -pi...+pi. Instead, rotate the * speaker angles so it would be as if angle=0, and keep them wrapped * within -pi...+pi. */ if(angle > 0.0f) { ALuint done = 0; ALuint i = 0; while(i < device->NumChan && device->SpeakerAngle[i]-angle < -F_PI) i++; for(done = 0;i < device->NumChan;done++) { SpeakerAngle[done] = device->SpeakerAngle[i]-angle; Speaker2Chan[done] = device->Speaker2Chan[i]; i++; } for(i = 0;done < device->NumChan;i++) { SpeakerAngle[done] = device->SpeakerAngle[i]-angle + F_PI*2.0f; Speaker2Chan[done] = device->Speaker2Chan[i]; done++; } } else { /* NOTE: '< device->NumChan' on the iterators is correct here since * we need to handle index 0. Because the iterators are unsigned, * they'll underflow and wrap to become 0xFFFFFFFF, which will * break as expected. */ ALuint done = device->NumChan-1; ALuint i = device->NumChan-1; while(i < device->NumChan && device->SpeakerAngle[i]-angle > F_PI) i--; for(done = device->NumChan-1;i < device->NumChan;done--) { SpeakerAngle[done] = device->SpeakerAngle[i]-angle; Speaker2Chan[done] = device->Speaker2Chan[i]; i--; } for(i = device->NumChan-1;done < device->NumChan;i--) { SpeakerAngle[done] = device->SpeakerAngle[i]-angle - F_PI*2.0f; Speaker2Chan[done] = device->Speaker2Chan[i]; done--; } } angle = 0.0f; } langle = angle - hwidth; rangle = angle + hwidth; /* First speaker */ i = 0; do { ALuint last = device->NumChan-1; enum Channel chan = Speaker2Chan[i]; if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle) { tmpgains[chan] = 1.0f; continue; } if(SpeakerAngle[i] < langle && SpeakerAngle[i+1] > langle) { a = (langle-SpeakerAngle[i]) / (SpeakerAngle[i+1]-SpeakerAngle[i]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a); } if(SpeakerAngle[i] > rangle) { a = (F_PI*2.0f + rangle-SpeakerAngle[last]) / (F_PI*2.0f + SpeakerAngle[i]-SpeakerAngle[last]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a); } else if(SpeakerAngle[last] < rangle) { a = (rangle-SpeakerAngle[last]) / (F_PI*2.0f + SpeakerAngle[i]-SpeakerAngle[last]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a); } } while(0); for(i = 1;i < device->NumChan-1;i++) { enum Channel chan = Speaker2Chan[i]; if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle) { tmpgains[chan] = 1.0f; continue; } if(SpeakerAngle[i] < langle && SpeakerAngle[i+1] > langle) { a = (langle-SpeakerAngle[i]) / (SpeakerAngle[i+1]-SpeakerAngle[i]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a); } if(SpeakerAngle[i] > rangle && SpeakerAngle[i-1] < rangle) { a = (rangle-SpeakerAngle[i-1]) / (SpeakerAngle[i]-SpeakerAngle[i-1]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a); } } /* Last speaker */ i = device->NumChan-1; do { enum Channel chan = Speaker2Chan[i]; if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle) { tmpgains[Speaker2Chan[i]] = 1.0f; continue; } if(SpeakerAngle[i] > rangle && SpeakerAngle[i-1] < rangle) { a = (rangle-SpeakerAngle[i-1]) / (SpeakerAngle[i]-SpeakerAngle[i-1]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a); } if(SpeakerAngle[i] < langle) { a = (langle-SpeakerAngle[i]) / (F_PI*2.0f + SpeakerAngle[0]-SpeakerAngle[i]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a); } else if(SpeakerAngle[0] > langle) { a = (F_PI*2.0f + langle-SpeakerAngle[i]) / (F_PI*2.0f + SpeakerAngle[0]-SpeakerAngle[i]); tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a); } } while(0); for(i = 0;i < device->NumChan;i++) { enum Channel chan = device->Speaker2Chan[i]; gains[chan] = sqrtf(tmpgains[chan]) * ingain; } } ALvoid aluInitPanning(ALCdevice *Device) { const char *layoutname = NULL; enum Channel *Speaker2Chan; ALfloat *SpeakerAngle; Speaker2Chan = Device->Speaker2Chan; SpeakerAngle = Device->SpeakerAngle; switch(Device->FmtChans) { case DevFmtMono: Device->NumChan = 1; Speaker2Chan[0] = FrontCenter; SpeakerAngle[0] = F_PI/180.0f * 0.0f; layoutname = NULL; break; case DevFmtStereo: Device->NumChan = 2; Speaker2Chan[0] = FrontLeft; Speaker2Chan[1] = FrontRight; SpeakerAngle[0] = F_PI/180.0f * -90.0f; SpeakerAngle[1] = F_PI/180.0f * 90.0f; layoutname = "layout_stereo"; break; case DevFmtQuad: Device->NumChan = 4; Speaker2Chan[0] = BackLeft; Speaker2Chan[1] = FrontLeft; Speaker2Chan[2] = FrontRight; Speaker2Chan[3] = BackRight; SpeakerAngle[0] = F_PI/180.0f * -135.0f; SpeakerAngle[1] = F_PI/180.0f * -45.0f; SpeakerAngle[2] = F_PI/180.0f * 45.0f; SpeakerAngle[3] = F_PI/180.0f * 135.0f; layoutname = "layout_quad"; break; case DevFmtX51: Device->NumChan = 5; Speaker2Chan[0] = BackLeft; Speaker2Chan[1] = FrontLeft; Speaker2Chan[2] = FrontCenter; Speaker2Chan[3] = FrontRight; Speaker2Chan[4] = BackRight; SpeakerAngle[0] = F_PI/180.0f * -110.0f; SpeakerAngle[1] = F_PI/180.0f * -30.0f; SpeakerAngle[2] = F_PI/180.0f * 0.0f; SpeakerAngle[3] = F_PI/180.0f * 30.0f; SpeakerAngle[4] = F_PI/180.0f * 110.0f; layoutname = "layout_surround51"; break; case DevFmtX51Side: Device->NumChan = 5; Speaker2Chan[0] = SideLeft; Speaker2Chan[1] = FrontLeft; Speaker2Chan[2] = FrontCenter; Speaker2Chan[3] = FrontRight; Speaker2Chan[4] = SideRight; SpeakerAngle[0] = F_PI/180.0f * -90.0f; SpeakerAngle[1] = F_PI/180.0f * -30.0f; SpeakerAngle[2] = F_PI/180.0f * 0.0f; SpeakerAngle[3] = F_PI/180.0f * 30.0f; SpeakerAngle[4] = F_PI/180.0f * 90.0f; layoutname = "layout_side51"; break; case DevFmtX61: Device->NumChan = 6; Speaker2Chan[0] = SideLeft; Speaker2Chan[1] = FrontLeft; Speaker2Chan[2] = FrontCenter; Speaker2Chan[3] = FrontRight; Speaker2Chan[4] = SideRight; Speaker2Chan[5] = BackCenter; SpeakerAngle[0] = F_PI/180.0f * -90.0f; SpeakerAngle[1] = F_PI/180.0f * -30.0f; SpeakerAngle[2] = F_PI/180.0f * 0.0f; SpeakerAngle[3] = F_PI/180.0f * 30.0f; SpeakerAngle[4] = F_PI/180.0f * 90.0f; SpeakerAngle[5] = F_PI/180.0f * 180.0f; layoutname = "layout_surround61"; break; case DevFmtX71: Device->NumChan = 7; Speaker2Chan[0] = BackLeft; Speaker2Chan[1] = SideLeft; Speaker2Chan[2] = FrontLeft; Speaker2Chan[3] = FrontCenter; Speaker2Chan[4] = FrontRight; Speaker2Chan[5] = SideRight; Speaker2Chan[6] = BackRight; SpeakerAngle[0] = F_PI/180.0f * -150.0f; SpeakerAngle[1] = F_PI/180.0f * -90.0f; SpeakerAngle[2] = F_PI/180.0f * -30.0f; SpeakerAngle[3] = F_PI/180.0f * 0.0f; SpeakerAngle[4] = F_PI/180.0f * 30.0f; SpeakerAngle[5] = F_PI/180.0f * 90.0f; SpeakerAngle[6] = F_PI/180.0f * 150.0f; layoutname = "layout_surround71"; break; } if(layoutname && Device->Type != Loopback) SetSpeakerArrangement(layoutname, SpeakerAngle, Speaker2Chan, Device->NumChan); }