#ifndef _AL_FILTER_H_ #define _AL_FILTER_H_ #include "alMain.h" #include "math_defs.h" #ifdef __cplusplus extern "C" { #endif #define LOWPASSFREQREF (5000.0f) #define HIGHPASSFREQREF (250.0f) /* Filters implementation is based on the "Cookbook formulae for audio * EQ biquad filter coefficients" by Robert Bristow-Johnson * http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */ /* Implementation note: For the shelf filters, the specified gain is for the * reference frequency, which is the centerpoint of the transition band. This * better matches EFX filter design. To set the gain for the shelf itself, use * the square root of the desired linear gain (or halve the dB gain). */ typedef enum ALfilterType { /** EFX-style low-pass filter, specifying a gain and reference frequency. */ ALfilterType_HighShelf, /** EFX-style high-pass filter, specifying a gain and reference frequency. */ ALfilterType_LowShelf, /** Peaking filter, specifying a gain and reference frequency. */ ALfilterType_Peaking, /** Low-pass cut-off filter, specifying a cut-off frequency. */ ALfilterType_LowPass, /** High-pass cut-off filter, specifying a cut-off frequency. */ ALfilterType_HighPass, /** Band-pass filter, specifying a center frequency. */ ALfilterType_BandPass, } ALfilterType; typedef struct ALfilterState { ALfloat x[2]; /* History of two last input samples */ ALfloat y[2]; /* History of two last output samples */ ALfloat b0, b1, b2; /* Transfer function coefficients "b" */ ALfloat a1, a2; /* Transfer function coefficients "a" (a0 is pre-applied) */ } ALfilterState; /* Currently only a C-based filter process method is implemented. */ #define ALfilterState_process ALfilterState_processC /** * Calculates the rcpQ (i.e. 1/Q) coefficient for shelving filters, using the * reference gain and shelf slope parameter. * \param gain 0 < gain * \param slope 0 < slope <= 1 */ inline ALfloat calc_rcpQ_from_slope(ALfloat gain, ALfloat slope) { return sqrtf((gain + 1.0f/gain)*(1.0f/slope - 1.0f) + 2.0f); } /** * Calculates the rcpQ (i.e. 1/Q) coefficient for filters, using the normalized * reference frequency and bandwidth. * \param f0norm 0 < f0norm < 0.5. * \param bandwidth 0 < bandwidth */ inline ALfloat calc_rcpQ_from_bandwidth(ALfloat f0norm, ALfloat bandwidth) { ALfloat w0 = F_TAU * f0norm; return 2.0f*sinhf(logf(2.0f)/2.0f*bandwidth*w0/sinf(w0)); } inline void ALfilterState_clear(ALfilterState *filter) { filter->x[0] = 0.0f; filter->x[1] = 0.0f; filter->y[0] = 0.0f; filter->y[1] = 0.0f; } /** * Sets up the filter state for the specified filter type and its parameters. * * \param filter The filter object to prepare. * \param type The type of filter for the object to apply. * \param gain The gain for the reference frequency response. Only used by the * Shelf and Peaking filter types. * \param f0norm The normalized reference frequency (ref_freq / sample_rate). * This is the center point for the Shelf, Peaking, and BandPass * filter types, or the cutoff frequency for the LowPass and * HighPass filter types. * \param rcpQ The reciprocal of the Q coefficient for the filter's transition * band. Can be generated from calc_rcpQ_from_slope or * calc_rcpQ_from_bandwidth depending on the available data. */ void ALfilterState_setParams(ALfilterState *filter, ALfilterType type, ALfloat gain, ALfloat f0norm, ALfloat rcpQ); inline void ALfilterState_copyParams(ALfilterState *restrict dst, const ALfilterState *restrict src) { dst->b0 = src->b0; dst->b1 = src->b1; dst->b2 = src->b2; dst->a1 = src->a1; dst->a2 = src->a2; } void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples); inline void ALfilterState_processPassthru(ALfilterState *filter, const ALfloat *restrict src, ALsizei numsamples) { if(numsamples >= 2) { filter->x[1] = src[numsamples-2]; filter->x[0] = src[numsamples-1]; filter->y[1] = src[numsamples-2]; filter->y[0] = src[numsamples-1]; } else if(numsamples == 1) { filter->x[1] = filter->x[0]; filter->x[0] = src[0]; filter->y[1] = filter->y[0]; filter->y[0] = src[0]; } } struct ALfilter; typedef struct ALfilterVtable { void (*const setParami)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALint val); void (*const setParamiv)(struct ALfilter *filter, ALCcontext *context, ALenum param, const ALint *vals); void (*const setParamf)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALfloat val); void (*const setParamfv)(struct ALfilter *filter, ALCcontext *context, ALenum param, const ALfloat *vals); void (*const getParami)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALint *val); void (*const getParamiv)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALint *vals); void (*const getParamf)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALfloat *val); void (*const getParamfv)(struct ALfilter *filter, ALCcontext *context, ALenum param, ALfloat *vals); } ALfilterVtable; #define DEFINE_ALFILTER_VTABLE(T) \ const struct ALfilterVtable T##_vtable = { \ T##_setParami, T##_setParamiv, \ T##_setParamf, T##_setParamfv, \ T##_getParami, T##_getParamiv, \ T##_getParamf, T##_getParamfv, \ } typedef struct ALfilter { // Filter type (AL_FILTER_NULL, ...) ALenum type; ALfloat Gain; ALfloat GainHF; ALfloat HFReference; ALfloat GainLF; ALfloat LFReference; const struct ALfilterVtable *vtbl; /* Self ID */ ALuint id; } ALfilter; inline void LockFiltersRead(ALCdevice *device) { LockUIntMapRead(&device->FilterMap); } inline void UnlockFiltersRead(ALCdevice *device) { UnlockUIntMapRead(&device->FilterMap); } inline void LockFiltersWrite(ALCdevice *device) { LockUIntMapWrite(&device->FilterMap); } inline void UnlockFiltersWrite(ALCdevice *device) { UnlockUIntMapWrite(&device->FilterMap); } inline struct ALfilter *LookupFilter(ALCdevice *device, ALuint id) { return (struct ALfilter*)LookupUIntMapKeyNoLock(&device->FilterMap, id); } inline struct ALfilter *RemoveFilter(ALCdevice *device, ALuint id) { return (struct ALfilter*)RemoveUIntMapKeyNoLock(&device->FilterMap, id); } ALvoid ReleaseALFilters(ALCdevice *device); #ifdef __cplusplus } #endif #endif