#ifndef _ALU_H_ #define _ALU_H_ #include #include #ifdef HAVE_FLOAT_H #include #endif #ifdef HAVE_IEEEFP_H #include #endif #include "alMain.h" #include "alBuffer.h" #include "alFilter.h" #include "hrtf.h" #include "align.h" #define F_PI (3.14159265358979323846f) #define F_PI_2 (1.57079632679489661923f) #define F_2PI (6.28318530717958647692f) #ifndef FLT_EPSILON #define FLT_EPSILON (1.19209290e-07f) #endif #define DEG2RAD(x) ((ALfloat)(x) * (F_PI/180.0f)) #define RAD2DEG(x) ((ALfloat)(x) * (180.0f/F_PI)) #define SRC_HISTORY_BITS (6) #define SRC_HISTORY_LENGTH (1< b) ? b : a); } inline ALfloat maxf(ALfloat a, ALfloat b) { return ((a > b) ? a : b); } inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max) { return minf(max, maxf(min, val)); } inline ALdouble mind(ALdouble a, ALdouble b) { return ((a > b) ? b : a); } inline ALdouble maxd(ALdouble a, ALdouble b) { return ((a > b) ? a : b); } inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max) { return mind(max, maxd(min, val)); } inline ALuint minu(ALuint a, ALuint b) { return ((a > b) ? b : a); } inline ALuint maxu(ALuint a, ALuint b) { return ((a > b) ? a : b); } inline ALuint clampu(ALuint val, ALuint min, ALuint max) { return minu(max, maxu(min, val)); } inline ALint mini(ALint a, ALint b) { return ((a > b) ? b : a); } inline ALint maxi(ALint a, ALint b) { return ((a > b) ? a : b); } inline ALint clampi(ALint val, ALint min, ALint max) { return mini(max, maxi(min, val)); } inline ALint64 mini64(ALint64 a, ALint64 b) { return ((a > b) ? b : a); } inline ALint64 maxi64(ALint64 a, ALint64 b) { return ((a > b) ? a : b); } inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max) { return mini64(max, maxi64(min, val)); } inline ALuint64 minu64(ALuint64 a, ALuint64 b) { return ((a > b) ? b : a); } inline ALuint64 maxu64(ALuint64 a, ALuint64 b) { return ((a > b) ? a : b); } inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max) { return minu64(max, maxu64(min, val)); } inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu) { return val1 + (val2-val1)*mu; } inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu) { ALfloat mu2 = mu*mu; ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3; ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3; ALfloat a2 = -0.5f*val0 + 0.5f*val2; ALfloat a3 = val1; return a0*mu*mu2 + a1*mu2 + a2*mu + a3; } ALvoid aluInitPanning(ALCdevice *Device); /** * ComputeAngleGains * * Sets channel gains based on a given source's angle and its half-width. The * angle and hwidth parameters are in radians. */ void ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat gains[MaxChannels]); /** * SetGains * * Helper to set the appropriate channels to the specified gain. */ inline void SetGains(const ALCdevice *device, ALfloat ingain, ALfloat gains[MaxChannels]) { ComputeAngleGains(device, 0.0f, F_PI, ingain, gains); } ALvoid CalcSourceParams(struct ALactivesource *src, const ALCcontext *ALContext); ALvoid CalcNonAttnSourceParams(struct ALactivesource *src, const ALCcontext *ALContext); ALvoid MixSource(struct ALactivesource *src, ALCdevice *Device, ALuint SamplesToDo); ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size); /* Caller must lock the device. */ ALvoid aluHandleDisconnect(ALCdevice *device); extern ALfloat ConeScale; extern ALfloat ZScale; #ifdef __cplusplus } #endif #endif