#ifndef _ALU_H_ #define _ALU_H_ #include "AL/al.h" #include "AL/alc.h" #include "AL/alext.h" #include #include #ifdef HAVE_FLOAT_H #include #endif #ifdef HAVE_IEEEFP_H #include #endif #define F_PI (3.14159265358979323846f) /* pi */ #define F_PI_2 (1.57079632679489661923f) /* pi/2 */ #ifndef HAVE_POWF static __inline float powf(float x, float y) { return (float)pow(x, y); } #endif #ifndef HAVE_SQRTF static __inline float sqrtf(float x) { return (float)sqrt(x); } #endif #ifndef HAVE_COSF static __inline float cosf(float x) { return (float)cos(x); } #endif #ifndef HAVE_SINF static __inline float sinf(float x) { return (float)sin(x); } #endif #ifndef HAVE_ACOSF static __inline float acosf(float x) { return (float)acos(x); } #endif #ifndef HAVE_ASINF static __inline float asinf(float x) { return (float)asin(x); } #endif #ifndef HAVE_ATANF static __inline float atanf(float x) { return (float)atan(x); } #endif #ifndef HAVE_ATAN2F static __inline float atan2f(float x, float y) { return (float)atan2(x, y); } #endif #ifndef HAVE_FABSF static __inline float fabsf(float x) { return (float)fabs(x); } #endif #ifndef HAVE_LOG10F static __inline float log10f(float x) { return (float)log10(x); } #endif #ifndef HAVE_FLOORF static __inline float floorf(float x) { return (float)floor(x); } #endif #ifdef __cplusplus extern "C" { #endif struct ALsource; struct ALbuffer; struct DirectParams; struct SendParams; typedef ALvoid (*DryMixerFunc)(struct ALsource *self, ALCdevice *Device, struct DirectParams *params, const ALfloat *RESTRICT data, ALuint srcchan, ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize); typedef ALvoid (*WetMixerFunc)(struct SendParams *params, const ALfloat *RESTRICT data, ALuint srcchan, ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize); enum Resampler { PointResampler, LinearResampler, CubicResampler, ResamplerMax, }; enum Channel { FrontLeft = 0, FrontRight, FrontCenter, LFE, BackLeft, BackRight, BackCenter, SideLeft, SideRight, MaxChannels, }; enum DistanceModel { InverseDistanceClamped = AL_INVERSE_DISTANCE_CLAMPED, LinearDistanceClamped = AL_LINEAR_DISTANCE_CLAMPED, ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED, InverseDistance = AL_INVERSE_DISTANCE, LinearDistance = AL_LINEAR_DISTANCE, ExponentDistance = AL_EXPONENT_DISTANCE, DisableDistance = AL_NONE, DefaultDistanceModel = InverseDistanceClamped }; /* Size for temporary storage of buffer data, in ALfloats. Larger values need * more stack, while smaller values may need more iterations. The value needs * to be a sensible size, however, as it constrains the max stepping value used * for mixing, as well as the maximum number of samples per mixing iteration. * The mixer requires being able to do two samplings per mixing loop. A 16KB * buffer can hold 512 sample frames for a 7.1 float buffer. With the cubic * resampler (which requires 3 padding sample frames), this limits the maximum * step to about 508. This means that buffer_freq*source_pitch cannot exceed * device_freq*508 for an 8-channel 32-bit buffer. */ #ifndef BUFFERSIZE #define BUFFERSIZE 4096 #endif #define FRACTIONBITS (14) #define FRACTIONONE (1< b) ? b : a); } static __inline ALfloat maxf(ALfloat a, ALfloat b) { return ((a > b) ? a : b); } static __inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max) { return minf(max, maxf(min, val)); } static __inline ALuint minu(ALuint a, ALuint b) { return ((a > b) ? b : a); } static __inline ALuint maxu(ALuint a, ALuint b) { return ((a > b) ? a : b); } static __inline ALuint clampu(ALuint val, ALuint min, ALuint max) { return minu(max, maxu(min, val)); } static __inline ALint mini(ALint a, ALint b) { return ((a > b) ? b : a); } static __inline ALint maxi(ALint a, ALint b) { return ((a > b) ? a : b); } static __inline ALint clampi(ALint val, ALint min, ALint max) { return mini(max, maxi(min, val)); } static __inline ALint64 mini64(ALint64 a, ALint64 b) { return ((a > b) ? b : a); } static __inline ALint64 maxi64(ALint64 a, ALint64 b) { return ((a > b) ? a : b); } static __inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max) { return mini64(max, maxi64(min, val)); } static __inline ALuint64 minu64(ALuint64 a, ALuint64 b) { return ((a > b) ? b : a); } static __inline ALuint64 maxu64(ALuint64 a, ALuint64 b) { return ((a > b) ? a : b); } static __inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max) { return minu64(max, maxu64(min, val)); } static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu) { return val1 + (val2-val1)*mu; } static __inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu) { ALfloat mu2 = mu*mu; ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3; ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3; ALfloat a2 = -0.5f*val0 + 0.5f*val2; ALfloat a3 = val1; return a0*mu*mu2 + a1*mu2 + a2*mu + a3; } static __inline int SetMixerFPUMode(void) { #if defined(_FPU_GETCW) && defined(_FPU_SETCW) && (defined(__i386__) || defined(__x86_64__)) fpu_control_t fpuState, newState; _FPU_GETCW(fpuState); newState = fpuState&~(_FPU_EXTENDED|_FPU_DOUBLE|_FPU_SINGLE | _FPU_RC_NEAREST|_FPU_RC_DOWN|_FPU_RC_UP|_FPU_RC_ZERO); newState |= _FPU_SINGLE | _FPU_RC_ZERO; _FPU_SETCW(newState); #else int fpuState; #if defined(HAVE__CONTROLFP) fpuState = _controlfp(0, 0); (void)_controlfp(_RC_CHOP|_PC_24, _MCW_RC|_MCW_PC); #elif defined(HAVE_FESETROUND) fpuState = fegetround(); #ifdef FE_TOWARDZERO fesetround(FE_TOWARDZERO); #endif #endif #endif return fpuState; } static __inline void RestoreFPUMode(int state) { #if defined(_FPU_GETCW) && defined(_FPU_SETCW) && (defined(__i386__) || defined(__x86_64__)) fpu_control_t fpuState = state; _FPU_SETCW(fpuState); #elif defined(HAVE__CONTROLFP) _controlfp(state, _MCW_RC|_MCW_PC); #elif defined(HAVE_FESETROUND) fesetround(state); #endif } static __inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector) { outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1]; outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2]; outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0]; } static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2) { return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] + inVector1[2]*inVector2[2]; } static __inline void aluNormalize(ALfloat *inVector) { ALfloat lengthsqr = aluDotproduct(inVector, inVector); if(lengthsqr > 0.0f) { ALfloat inv_length = 1.0f/sqrtf(lengthsqr); inVector[0] *= inv_length; inVector[1] *= inv_length; inVector[2] *= inv_length; } } ALvoid aluInitPanning(ALCdevice *Device); ALvoid ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat *gains); ALvoid CalcSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext); ALvoid CalcNonAttnSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext); DryMixerFunc SelectDirectMixer(void); DryMixerFunc SelectHrtfMixer(void); WetMixerFunc SelectSendMixer(void); ALvoid MixSource(struct ALsource *Source, ALCdevice *Device, ALuint SamplesToDo); ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size); ALvoid aluHandleDisconnect(ALCdevice *device); extern ALfloat ConeScale; extern ALfloat ZScale; #ifdef __cplusplus } #endif #endif