#ifndef _ALU_H_ #define _ALU_H_ #include "AL/al.h" #include "AL/alc.h" #include "AL/alext.h" #include #include #ifdef HAVE_FLOAT_H #include /* HACK: Seems cross-compiling with MinGW includes the wrong float.h, which * doesn't define Windows' _controlfp and related macros */ #if defined(__MINGW32__) && !defined(_RC_CHOP) /* Control word masks for unMask */ #define _MCW_EM 0x0008001F /* Error masks */ #define _MCW_IC 0x00040000 /* Infinity */ #define _MCW_RC 0x00000300 /* Rounding */ #define _MCW_PC 0x00030000 /* Precision */ /* Control word values for unNew (use with related unMask above) */ #define _EM_INVALID 0x00000010 #define _EM_DENORMAL 0x00080000 #define _EM_ZERODIVIDE 0x00000008 #define _EM_OVERFLOW 0x00000004 #define _EM_UNDERFLOW 0x00000002 #define _EM_INEXACT 0x00000001 #define _IC_AFFINE 0x00040000 #define _IC_PROJECTIVE 0x00000000 #define _RC_CHOP 0x00000300 #define _RC_UP 0x00000200 #define _RC_DOWN 0x00000100 #define _RC_NEAR 0x00000000 #define _PC_24 0x00020000 #define _PC_53 0x00010000 #define _PC_64 0x00000000 _CRTIMP unsigned int __cdecl __MINGW_NOTHROW _controlfp (unsigned int unNew, unsigned int unMask); #endif #endif #ifdef HAVE_IEEEFP_H #include #endif #define F_PI (3.14159265358979323846f) /* pi */ #define F_PI_2 (1.57079632679489661923f) /* pi/2 */ #ifdef HAVE_POWF #define aluPow(x,y) (powf((x),(y))) #else #define aluPow(x,y) ((ALfloat)pow((double)(x),(double)(y))) #endif #ifdef HAVE_SQRTF #define aluSqrt(x) (sqrtf((x))) #else #define aluSqrt(x) ((ALfloat)sqrt((double)(x))) #endif #ifdef HAVE_COSF #define aluCos(x) (cosf((x))) #else #define aluCos(x) ((ALfloat)cos((double)(x))) #endif #ifdef HAVE_SINF #define aluSin(x) (sinf((x))) #else #define aluSin(x) ((ALfloat)sin((double)(x))) #endif #ifdef HAVE_ACOSF #define aluAcos(x) (acosf((x))) #else #define aluAcos(x) ((ALfloat)acos((double)(x))) #endif #ifdef HAVE_ASINF #define aluAsin(x) (asinf((x))) #else #define aluAsin(x) ((ALfloat)asin((double)(x))) #endif #ifdef HAVE_ATANF #define aluAtan(x) (atanf((x))) #else #define aluAtan(x) ((ALfloat)atan((double)(x))) #endif #ifdef HAVE_ATAN2F #define aluAtan2(x,y) (atan2f((x),(y))) #else #define aluAtan2(x,y) ((ALfloat)atan2((double)(x),(double)(y))) #endif #ifdef HAVE_FABSF #define aluFabs(x) (fabsf((x))) #else #define aluFabs(x) ((ALfloat)fabs((double)(x))) #endif #ifdef HAVE_LOG10F #define aluLog10(x) (log10f((x))) #else #define aluLog10(x) ((ALfloat)log10((double)(x))) #endif #ifdef HAVE_FLOORF #define aluFloor(x) (floorf((x))) #else #define aluFloor(x) ((ALfloat)floor((double)(x))) #endif #define QUADRANT_NUM 128 #define LUT_NUM (4 * QUADRANT_NUM) #ifdef __cplusplus extern "C" { #endif struct ALsource; struct ALbuffer; typedef ALvoid (*MixerFunc)(struct ALsource *self, ALCdevice *Device, const ALvoid *RESTRICT data, ALuint *DataPosInt, ALuint *DataPosFrac, ALuint OutPos, ALuint SamplesToDo, ALuint BufferSize); enum Resampler { POINT_RESAMPLER = 0, LINEAR_RESAMPLER, CUBIC_RESAMPLER, RESAMPLER_MAX, RESAMPLER_MIN = -1, RESAMPLER_DEFAULT = LINEAR_RESAMPLER }; enum Channel { FRONT_LEFT = 0, FRONT_RIGHT, FRONT_CENTER, LFE, BACK_LEFT, BACK_RIGHT, BACK_CENTER, SIDE_LEFT, SIDE_RIGHT, MAXCHANNELS }; enum DistanceModel { InverseDistanceClamped = AL_INVERSE_DISTANCE_CLAMPED, LinearDistanceClamped = AL_LINEAR_DISTANCE_CLAMPED, ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED, InverseDistance = AL_INVERSE_DISTANCE, LinearDistance = AL_LINEAR_DISTANCE, ExponentDistance = AL_EXPONENT_DISTANCE, DisableDistance = AL_NONE, DefaultDistanceModel = InverseDistanceClamped }; #define BUFFERSIZE 4096 #define FRACTIONBITS (14) #define FRACTIONONE (1< b) ? b : a); } static __inline ALfloat maxf(ALfloat a, ALfloat b) { return ((a > b) ? a : b); } static __inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max) { return minf(max, maxf(min, val)); } static __inline ALuint minu(ALuint a, ALuint b) { return ((a > b) ? b : a); } static __inline ALuint maxu(ALuint a, ALuint b) { return ((a > b) ? a : b); } static __inline ALuint clampu(ALuint val, ALuint min, ALuint max) { return minu(max, maxu(min, val)); } static __inline ALint mini(ALint a, ALint b) { return ((a > b) ? b : a); } static __inline ALint maxi(ALint a, ALint b) { return ((a > b) ? a : b); } static __inline ALint clampi(ALint val, ALint min, ALint max) { return mini(max, maxi(min, val)); } static __inline ALint64 mini64(ALint64 a, ALint64 b) { return ((a > b) ? b : a); } static __inline ALint64 maxi64(ALint64 a, ALint64 b) { return ((a > b) ? a : b); } static __inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max) { return mini64(max, maxi64(min, val)); } static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu) { return val1 + (val2-val1)*mu; } static __inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu) { ALfloat mu2 = mu*mu; ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3; ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3; ALfloat a2 = -0.5f*val0 + 0.5f*val2; ALfloat a3 = val1; return a0*mu*mu2 + a1*mu2 + a2*mu + a3; } static __inline int SetMixerFPUMode(void) { #if defined(_FPU_GETCW) && defined(_FPU_SETCW) fpu_control_t fpuState, newState; _FPU_GETCW(fpuState); newState = fpuState&~(_FPU_EXTENDED|_FPU_DOUBLE|_FPU_SINGLE | _FPU_RC_NEAREST|_FPU_RC_DOWN|_FPU_RC_UP|_FPU_RC_ZERO); newState |= _FPU_SINGLE | _FPU_RC_ZERO; _FPU_SETCW(newState); #else int fpuState; #if defined(HAVE__CONTROLFP) fpuState = _controlfp(0, 0); (void)_controlfp(_RC_CHOP|_PC_24, _MCW_RC|_MCW_PC); #elif defined(HAVE_FESETROUND) fpuState = fegetround(); fesetround(FE_TOWARDZERO); #endif #endif return fpuState; } static __inline void RestoreFPUMode(int state) { #if defined(_FPU_GETCW) && defined(_FPU_SETCW) fpu_control_t fpuState = state; _FPU_SETCW(fpuState); #elif defined(HAVE__CONTROLFP) _controlfp(state, _MCW_RC|_MCW_PC); #elif defined(HAVE_FESETROUND) fesetround(state); #endif } static __inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector) { outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1]; outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2]; outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0]; } static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2) { return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] + inVector1[2]*inVector2[2]; } static __inline void aluNormalize(ALfloat *inVector) { ALfloat length, inverse_length; length = aluSqrt(aluDotproduct(inVector, inVector)); if(length > 0.0f) { inverse_length = 1.0f/length; inVector[0] *= inverse_length; inVector[1] *= inverse_length; inVector[2] *= inverse_length; } } ALvoid aluInitPanning(ALCdevice *Device); ALint aluCart2LUTpos(ALfloat re, ALfloat im); ALvoid CalcSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext); ALvoid CalcNonAttnSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext); MixerFunc SelectMixer(enum Resampler Resampler); MixerFunc SelectHrtfMixer(enum Resampler Resampler); ALvoid MixSource(struct ALsource *Source, ALCdevice *Device, ALuint SamplesToDo); ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size); ALvoid aluHandleDisconnect(ALCdevice *device); extern ALfloat ConeScale; extern ALfloat ZScale; #ifdef __cplusplus } #endif #endif